A381776 Empty polygon numbers: a(n) is the smallest number of points in the plane (with no three of them collinear) such that an empty convex n-gon cannot be avoided.
3, 5, 10, 30
Offset: 3
Links
- P. Erdös and G. Szekeres, A Combinatorial Problem in Geometry, Compositio Mathematica, Volume 2 (1935), pp. 463-470 (alternative source).
- Marijn J. H. Heule and Manfred Scheucher, Happy Ending: An Empty Hexagon in Every Set of 30 Points, arXiv:2403.00737 [cs.CG], 2024.
- J. D. Horton, Sets with No Empty Convex 7-Gons, Canadian Mathematical Bulletin, Vol. 26 Issue 4, 1983, pp. 482-484.
- PurpleMind, The Miracle Solution to This 100 Year Old Geometry Problem, YouTube video, 2025.
- Bernardo Subercaseaux, Wojciech Nawrocki, James Gallicchio, Cayden Codel, Mario Carneiro and Marijn J. H. Heule, Formal Verification of the Empty Hexagon Number, arXiv:2403.17370 [cs.CG], 2024.
- Wikipedia, Happy ending problem.
Comments