cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A301924 Regular triangle where T(n,k) is the number of unlabeled k-uniform connected hypergraphs spanning n vertices.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 3, 1, 0, 21, 29, 4, 1, 0, 112, 2101, 150, 5, 1, 0, 853, 7011181, 7013164, 1037, 6, 1, 0, 11117, 1788775603301, 29281354507753847, 1788782615612, 12338, 7, 1, 0, 261080, 53304526022885278403, 234431745534048893449761040648508, 234431745534048922729326772799024, 53304527811667884902, 274659, 8, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 19 2018

Keywords

Examples

			Triangle begins:
   1
   0    1
   0    2       1
   0    6       3       1
   0   21      29       4    1
   0  112    2101     150    5 1
   0  853 7011181 7013164 1037 6 1
   ...
The T(4,2) = 6 hypergraphs:
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,4},{2,3},{2,4},{3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Row sums are A301920.
Columns k=2..3 are A001349(n > 1), A003190(n > 1).

Programs

  • PARI
    InvEulerT(v)={my(p=log(1+x*Ser(v))); dirdiv(vector(#v,n,polcoeff(p,n)), vector(#v,n,1/n))}
    permcount(v)={my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    rep(typ)={my(L=List(), k=0); for(i=1, #typ, k+=typ[i]; listput(L, k); while(#L0, u=vecsort(apply(f, u)); d=lex(u, v)); !d}
    Q(n, k, perm)={my(t=0); forsubset([n, k], v, t += can(Vec(v), t->perm[t])); t}
    U(n, k)={my(s=0); forpart(p=n, s += permcount(p)*2^Q(n, k, rep(p))); s/n!}
    A(n)={Mat(vector(n, k, InvEulerT(vector(n,i,U(i,k)-U(i-1,k)))~))}
    { my(T=A(8)); for(n=1, #T, print(T[n,1..n])) } \\ Andrew Howroyd, Aug 26 2019

Formula

Column k is the inverse Euler transform of column k of A301922. - Andrew Howroyd, Aug 26 2019

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 26 2019
Showing 1-1 of 1 results.