cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003263 Number of representations of n as a sum of distinct Lucas numbers 1, 3, 4, 7, 11, ... (A000204).

Original entry on oeis.org

1, 0, 1, 2, 1, 0, 2, 2, 0, 1, 3, 2, 0, 2, 3, 1, 0, 3, 3, 0, 2, 4, 2, 0, 3, 3, 0, 1, 4, 3, 0, 3, 5, 2, 0, 4, 4, 0, 2, 5, 3, 0, 3, 4, 1, 0, 4, 4, 0, 3, 6, 3, 0, 5, 5, 0, 2, 6, 4, 0, 4, 6, 2, 0, 5, 5, 0, 3, 6, 3, 0, 4, 4, 0, 1, 5, 4, 0, 4, 7, 3, 0, 6, 6, 0, 3, 8, 5, 0, 5, 7, 2, 0, 6, 6, 0, 4, 8, 4, 0, 6, 6, 0, 2, 7
Offset: 1

Views

Author

Keywords

References

  • A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 58.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    n1 = 10; n2 = LucasL[n1]; Product[1 + x^LucasL[n], {n, 1, n1}] + O[x]^n2 // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Feb 17 2017, after Joerg Arndt *)
  • PARI
    L(n)=fibonacci(n+1) + fibonacci(n-1);
    N = 66;  x = 'x + O('x^N);
    gf = prod(n=1, 11, 1 + x^L(n) );
    Vec(gf) \\ Joerg Arndt, Jul 14 2013

Formula

G.f.: Product_{n>=1} (1 + x^L(n)) where L(n) = A000204(n). - Joerg Arndt, Jul 14 2013

Extensions

More terms from James Sellers, May 29 2000