cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A099054 Arshon's sequence: start from 1 and replace the letters in odd positions using 1 -> 123, 2 -> 231, 3 -> 312 and the letters in even positions using 1 -> 321, 2-> 132, 3 -> 213.

Original entry on oeis.org

1, 2, 3, 1, 3, 2, 3, 1, 2, 3, 2, 1, 3, 1, 2, 1, 3, 2, 3, 1, 2, 3, 2, 1, 2, 3, 1, 2, 1, 3, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 1, 3, 2, 3, 1, 2, 3, 2, 1, 2, 3, 1, 2, 1, 3, 2, 3, 1, 3, 2, 1, 2, 3, 1, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 2, 3, 1, 2, 1, 3, 1, 2, 3, 2, 1, 3, 2, 3, 1
Offset: 0

Views

Author

Sergey Kitaev, Nov 14 2004

Keywords

Comments

The first three iterations give 1; 123; 123132312; ... the limiting sequence is shown here. Properties: the sequence is squarefree and cannot be defined by iteration of a morphism.
a(n) = A219762(n+1) + 1. - Reinhard Zumkeller, Aug 08 2014

References

  • G. A. Gurevich, Nonrepeating sequences, pp. 61-66 of Kvant Selecta: Combinatorics I, ed. S. Tabachnikov, AMS, 2001.

Crossrefs

Cf. A100336, A100337, A003270 (the same?).
Cf. A219762, A241418 (first differences).

Programs

  • Haskell
    import Data.List (transpose, stripPrefix); import Data.Maybe (fromJust)
    a099054 n = a099054_list !! n
    a099054_list = 1 : concatMap fromJust (zipWith stripPrefix ass $ tail ass)
       where ass = iterate f [1]
             f xs = concat $ concat $ transpose [map g $ e xs, map h $ o xs]
             g 1 = [1,2,3]; g 2 = [2,3,1]; g 3 = [3,1,2]
             h 1 = [3,2,1]; h 2 = [1,3,2]; h 3 = [2,1,3]
             e [] = []; e [x] = [x]; e (x:_:xs) = x : e xs
             o [] = []; o [x] = []; o (_:x:xs) = x : o xs
    -- Reinhard Zumkeller, Aug 08 2014
  • Mathematica
    f[n_List] := Block[{a = {}, l = Length[n], k = 1}, While[k < l + 1, If[ EvenQ[ k], Switch[ n[[k]], 1, AppendTo[a, 321], 2, AppendTo[a, 132], 3, AppendTo[a, 213]], Switch[ n[[k]], 1, AppendTo[a, 123], 2, AppendTo[a, 231], 3, AppendTo[a, 312]]]; k++ ]; Flatten[IntegerDigits /@ a]]; Take[ Nest[f, {1}, 5], 105] (* Robert G. Wilson v, Nov 15 2004 *)

Extensions

More terms from Robert G. Wilson v and John W. Layman, Nov 15 2004
Showing 1-1 of 1 results.