A003321 Smallest n-th order perfect digital invariant or PDI: smallest number > 1 equal to sum of n-th powers of its digits, or 0 if no such number exists.
2, 0, 153, 1634, 4150, 548834, 1741725, 24678050, 146511208, 4679307774, 32164049650, 0, 564240140138, 28116440335967, 0, 4338281769391370, 233411150132317, 0, 1517841543307505039, 63105425988599693916
Offset: 1
Examples
1^3 + 5^3 + 3^3 = 153. 1*0^17 + 5*1^17 + 2*2^17 + 4*3^17 + 1*4^17 + 1*5^17 + 1*7^17 = 233411150132317.
References
- M. Gardner, The Magic Numbers of Dr Matrix. Prometheus, Buffalo, NY, 1985, p. 249.
- J. S. Madachy, Mathematics on Vacation, Thomas Nelson and Sons Ltd. 1966, p. 164.
- J. S. Madachy, Madachy's Mathematical Recreations, Dover, p. 164.
- C. A. Pickover, Keys to Infinity. New York: W. H. Freeman, pp. 169-170, 1995.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Joseph Myers, Table of n, a(n) for n=1..109
- L. E. Deimel, Narcissistic Numbers
- H. Heinz, Narcissistic Numbers
- Eric Weisstein's World of Mathematics, Narcissistic Number.
Crossrefs
Programs
-
PARI
a(n)=m=1;while(m*9^n>=10^m,m++);for(k=2,10^m,d=digits(k);s=sum(i=1,#d,d[i]^n);if(s==k,return(k)));0 n=1;while(n<10,print1(a(n),", ");n++) \\ Derek Orr, Dec 19 2014
Extensions
Additional comments from Lekraj Beedassy, May 23 2001
Extended and cross-references edited by Joseph Myers, Jun 28 2009
Comments