A003328 Numbers that are the sum of 5 positive cubes.
5, 12, 19, 26, 31, 33, 38, 40, 45, 52, 57, 59, 64, 68, 71, 75, 78, 82, 83, 89, 90, 94, 96, 97, 101, 108, 109, 115, 116, 120, 127, 129, 131, 134, 135, 136, 138, 143, 145, 146, 150, 152, 153, 155, 157, 162, 164, 169, 171, 172, 176, 181, 183, 188, 190, 192, 194, 195, 199
Offset: 1
Examples
From _David A. Corneth_, Aug 01 2020: (Start) 3084 is in the sequence as 3084 = 5^3 + 5^3 + 5^3 + 8^3 + 13^3. 4385 is in the sequence as 4385 = 4^3 + 4^3 + 9^3 + 11^3 + 13^3. 5426 is in the sequence as 5426 = 8^3 + 9^3 + 9^3 + 12^3 + 12^3. (End)
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Eric Weisstein's World of Mathematics, Cubic Number.
Crossrefs
Cf. A057906 (Complement)
Cf. A###### (x, y) = Numbers that are the sum of x nonzero y-th powers:
A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).
Programs
-
PARI
select( {is_A003328(n,k=5,m=3,L=sqrtnint(abs(n-k+1),m))=if( n>k*L^m || n
M. F. Hasler, Aug 02 2020 A003328_upto(N,k=5,m=3)=[i|i<-[1..#N=sum(n=1,sqrtnint(N,m),'x^n^m,O('x^N))^k], polcoef(N,i)] \\ M. F. Hasler, Aug 02 2020 -
Python
from collections import Counter from itertools import combinations_with_replacement as combs_w_rep def aupto(lim): s = filter(lambda x: x<=lim, (i**3 for i in range(1, int(lim**(1/3))+2))) s2 = filter(lambda x: x<=lim, (sum(c) for c in combs_w_rep(s, 5))) s2counts = Counter(s2) return sorted(k for k in s2counts) print(aupto(200)) # Michael S. Branicky, May 12 2021
Comments