cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003331 Numbers that are the sum of 8 positive cubes.

Original entry on oeis.org

8, 15, 22, 29, 34, 36, 41, 43, 48, 50, 55, 57, 60, 62, 64, 67, 69, 71, 74, 76, 78, 81, 83, 85, 86, 88, 92, 93, 95, 97, 99, 100, 102, 104, 106, 107, 111, 112, 113, 114, 118, 119, 120, 121, 123, 125, 126, 130, 132, 133, 134, 137, 138, 139, 140, 141, 144, 145, 146, 148, 149
Offset: 1

Views

Author

Keywords

Comments

620 is the largest among only 142 positive integers not in this sequence. This can be proved by induction. - M. F. Hasler, Aug 13 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
1796 is in the sequence as 1796 = 4^3 + 4^3 + 4^3 + 4^3 + 5^3 + 7^3 + 7^3 + 9^3.
2246 is in the sequence as 2246 = 2^3 + 4^3 + 5^3 + 5^3 + 5^3 + 5^3 + 7^3 + 11^3.
3164 is in the sequence as 3164 = 5^3 + 5^3 + 6^3 + 6^3 + 8^3 + 8^3 + 9^3 + 9^3.(End)
		

Crossrefs

Other sequences of numbers that are the sum of x nonzero y-th powers:
A000404 (x=2, y=2), A000408 (3, 2), A000414 (4, 2), A047700 (5, 2),
A003325 (2, 3), A003072 (3, 3), A003327 .. A003335 (4 .. 12, 3),
A003336 .. A003346 (2 .. 12, 4), A003347 .. A003357 (2 .. 12, 5),
A003358 .. A003368 (2 .. 12, 6), A003369 .. A003379 (2 .. 12, 7),
A003380 .. A003390 (2 .. 12, 8), A003391 .. A004801 (2 .. 12, 9),
A004802 .. A004812 (2 .. 12, 10), A004813 .. A004823 (2 .. 12, 11).

Programs

  • Mathematica
    Module[{upto=200,c},c=Floor[Surd[upto,3]];Select[Union[Total/@ Tuples[ Range[ c]^3,8]],#<=upto&]] (* Harvey P. Dale, Jan 11 2016 *)
  • PARI
    (A003331_upto(N, k=8, m=3)=[i|i<-[1..#N=sum(n=1, sqrtnint(N, m), 'x^n^m, O('x^N))^k], polcoef(N, i)])(150) \\ M. F. Hasler, Aug 02 2020
    A003331(n)=if(n>478, n+142, n>329, n+141, A003331_upto(470)[n]) \\ M. F. Hasler, Aug 13 2020
    
  • Python
    from itertools import combinations_with_replacement as mc
    def aupto(lim):
        cbs = (i**3 for i in range(1, int((lim-7)**(1/3))+2))
        return sorted(set(k for k in (sum(c) for c in mc(cbs, 8)) if k <= lim))
    print(aupto(150)) # Michael S. Branicky, Aug 15 2021

Formula

a(n) = 142 + n for all n > 478. - M. F. Hasler, Aug 13 2020