A003337 Numbers n which are the sum of 3 nonzero 4th powers.
3, 18, 33, 48, 83, 98, 113, 163, 178, 243, 258, 273, 288, 338, 353, 418, 513, 528, 593, 627, 642, 657, 707, 722, 768, 787, 882, 897, 962, 1137, 1251, 1266, 1298, 1313, 1328, 1331, 1378, 1393, 1458, 1506, 1553, 1568, 1633, 1808, 1875, 1922, 1937, 2002, 2177
Offset: 1
Examples
From _David A. Corneth_, Aug 01 2020: (Start) 194818 is in the sequence as 194818 = 3^4 + 4^4 + 21^4. 480113 is in the sequence as 480113 = 7^4 + 12^4 + 26^4. 693842 is in the sequence as 693842 = 13^4 + 15^4 + 28^4. (End)
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Eric Weisstein's World of Mathematics, Biquadratic Number.
Crossrefs
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).
Programs
-
Python
def aupto(lim): p1 = set(i**4 for i in range(1, int(lim**.25)+2) if i**4 <= lim) p2 = set(a+b for a in p1 for b in p1 if a+b <= lim) p3 = set(apb+c for apb in p2 for c in p1 if apb+c <= lim) return sorted(p3) print(aupto(2400)) # Michael S. Branicky, Mar 18 2021
Comments