cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003346 Numbers that are the sum of 12 positive 4th powers.

Original entry on oeis.org

12, 27, 42, 57, 72, 87, 92, 102, 107, 117, 122, 132, 137, 147, 152, 162, 167, 172, 177, 182, 187, 192, 197, 202, 212, 217, 227, 232, 242, 247, 252, 257, 262, 267, 277, 282, 292, 297, 307, 312, 322, 327, 332, 342, 347, 357, 362, 372, 377, 387, 392, 402, 407, 412, 417
Offset: 1

Views

Author

Keywords

Comments

a(88) = 636 = 5^4 + 11 and a(91) = 651 = 5^4 + 2^4 + 10 are the first two terms not congruent to 2 or 7 (mod 10). - M. F. Hasler, Aug 03 2020

Examples

			From _David A. Corneth_, Aug 03 2020: (Start)
3740 is in the sequence as 3740 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 3^4 + 5^4 + 5^4 + 7^4.
4690 is in the sequence as 4690 = 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 4^4 + 4^4 + 4^4 + 5^4 + 5^4 + 6^4 + 6^4.
7193 is in the sequence as 7193 = 2^4 + 4^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 6^4. (End)
		

Crossrefs

Cf. A000583 (4th powers).
Other numbers that are the sum of k positive m-th powers:
A000404 (k=2, m=2), A000408 (3, 2), A000414 (4, 2), A047700 (k=5, m=2),
A003325 (k=2, m=3), A003072 (k=3, m=3), A003327 .. A003335 (k=4..12, m=3),
A003336 .. A003346 (k=2..12, m=4), A003347 .. A003357 (k=2..12, m=5),
A003358 .. A003368 (k=2..12, m=6), A003369 .. A003379 (k=2..12, m=7),
A003380 .. A003390 (k=2..12, m=8), A003391 .. A004801 (k=2..12, m=9),
A004802 .. A004812 (k=2..12, m=10), A004813 .. A004823 (k=2..12, m=11).

Programs

  • PARI
    (A003346_upto(N, k=12, m=4)=[i|i<-[1..#N=sum(n=1, sqrtnint(N, m), 'x^n^m, O('x^N))^k], polcoef(N, i)])(500) \\ 2nd & 3rd optional arg allow to get other sequences of this group. See A003333 for alternate code. - M. F. Hasler, Aug 03 2020
    
  • Python
    from itertools import count, takewhile, combinations_with_replacement as mc
    def aupto(limit):
        qd = takewhile(lambda x: x <= limit, (k**4 for k in count(1)))
        ss = set(sum(c) for c in mc(qd, 12))
        return sorted(s for s in ss if s <= limit)
    print(aupto(417)) # Michael S. Branicky, Dec 27 2021