cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003380 Numbers that are the sum of 2 nonzero 8th powers.

Original entry on oeis.org

2, 257, 512, 6562, 6817, 13122, 65537, 65792, 72097, 131072, 390626, 390881, 397186, 456161, 781250, 1679617, 1679872, 1686177, 1745152, 2070241, 3359232, 5764802, 5765057, 5771362, 5830337, 6155426, 7444417, 11529602, 16777217, 16777472, 16783777, 16842752
Offset: 1

Views

Author

Keywords

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
274893519322337 is in the sequence as 274893519322337 = 58^8 + 59^8.
357707312890625 is in the sequence as 357707312890625 = 50^8 + 65^8.
2590188068194497 is in the sequence as 2590188068194497 = 57^8 + 84^8. (End)
		

Crossrefs

Subsequence of A004875.
Cf. A155468 (2 distinct 8th).
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • Maple
    A003380 := proc(nmax::integer)
        local a, x,x8,y,y8 ;
        a := {} ;
        for x from 1 do
            x8 := x^8 ;
            if 2*x8 > nmax then
                break;
            end if;
            for y from x do
                y8 := y^8 ;
                if x8+y8 > nmax then
                    break;
                end if;
                if x8+y8 <= nmax then
                    a := a  union {x8+y8} ;
                end if;
            end do:
        end do:
        sort(convert(a,list)) ;
    end proc:
    nmax := 20000000000000000 ;
    L:= A003380(nmax) ;
    LISTTOBFILE(L,"b003380.txt",1) ; # R. J. Mathar, Aug 01 2020
  • Mathematica
    Total/@Tuples[Range[8]^8,2]//Union (* Harvey P. Dale, Apr 04 2017 *)
  • PARI
    list(lim)=my(v=List(), x8); for(x=1, sqrtnint(lim\=1, 8), x8=x^8; for(y=1, min(sqrtnint(lim-x8, 8), x), listput(v, x8+y^8))); Set(v) \\ Charles R Greathouse IV, Aug 22 2017