cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003404 Number of solid partitions of n supported on graph of cube.

Original entry on oeis.org

1, 1, 4, 7, 14, 23, 41, 63, 104, 152, 230, 327, 470, 647, 897, 1202, 1616, 2117, 2775, 3566, 4580, 5787, 7301, 9092, 11298, 13885, 17028, 20688, 25076, 30154, 36172, 43094, 51221, 60511, 71323, 83622, 97822, 113893, 132323, 153083
Offset: 0

Views

Author

Keywords

References

  • P. A. MacMahon, Memoir on the theory of partitions of numbers - Part VI, Phil. Trans. Roal Soc., 211 (1912), 345-373 (see Section 98).
  • J. C. P. Miller, On the enumeration of partially ordered sets of integers, pp. 109-124 of T. P. McDonough and V. C. Mavron, editors, Combinatorics: Proceedings of the Fourth British Combinatorial Conference 1973. London Mathematical Society, Lecture Note Series, Number 13, Cambridge University Press, NY, 1974. [The g.f. shown below appears on page 121. - N. J. A. Sloane, Apr 22 2015]
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+2*q^2+2*q^3+3*q^4+3*q^5+5*q^6+4*q^7+8*q^8+ 4*q^9+ 5*q^10+ 3*q^11+3*q^12+2*q^13+2*q^14+q^16)/((1-q)*(1-q^2)*(1-q^3)*(1-q^4)* (1-q^5)*(1-q^6)*(1-q^7)*(1-q^8)),{q,0,40}],q] (* Harvey P. Dale, Mar 07 2012 *)
    LinearRecurrence[{1,1,0,0,-1,0,-1,0,-1,0,1,2,1,0,1,-1,-1,-2,-1,-1,1,0,1,2,1,0,-1,0,-1,0,-1,0,0,1,1,-1},{1,1,4,7,14,23,41,63,104,152,230,327,470,647,897,1202,1616,2117,2775,3566,4580,5787,7301,9092,11298,13885,17028,20688,25076,30154,36172,43094,51221,60511,71323,83622},50] (* Harvey P. Dale, Jun 11 2022 *)

Formula

G.f.: (1 + 2*q^2 + 2*q^3 + 3*q^4 + 3*q^5 + 5*q^6 + 4*q^7 + 8*q^8 + 4*q^9 + 5*q^10 + 3*q^11 + 3*q^12 + 2*q^13 + 2*q^14 + q^16)/((1 - q)*(1 - q^2)*(1 - q^3)*(1 - q^4)*(1 - q^5)*(1 - q^6)*(1 - q^7)*(1 - q^8)).