A003420 Values of m in the discriminant D = -4*m leading to a new maximum of the L-function of the Dirichlet series L(1) = Sum_{k=1..oo} Kronecker(D,k)/k.
1, 2, 5, 11, 14, 26, 41, 89, 101, 194, 314, 341, 689, 1091, 1154, 1889, 2141, 3449, 3506, 5561, 6254, 8126, 8774, 10709, 13166, 15461, 23201, 24569, 30014, 81149, 81626, 162686, 243374, 644474, 839354, 879941
Offset: 1
Examples
a(1) = 1: L(1) for D=-4*1 ~= 0.785398... = Pi/4. a(2) = 2: L(1) for D=-4*2 ~= 1.11072073... = Pi/(2*sqrt(2)), a(2) > a(1); L(1) for D=-4*3 ~= 0.90689..., L(1) for D=-4*4 ~= 0.785398..., both < a(2); a(3) = 5: L(1) for D=-4*5 = 1.40496..., a(3) > a(2).
References
- D. Shanks, Systematic examination of Littlewood's bounds on L(1,chi), pp. 267-283 of Analytic Number Theory, ed. H. G. Diamond, Proc. Sympos. Pure Math., 24 (1973). Amer. Math. Soc.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Duncan A. Buell, Small class numbers and extreme values of L-functions of quadratic fields, Math. Comp., 31 (1977), 786-796 (Table 10, page 792).
- D. Shanks, Systematic examination of Littlewood's bounds on L(1,chi), Proc. Sympos. Pure Math., 24 (1973). Amer. Math. Soc. (Annotated scanned copy)
Extensions
New title, a(1) prepended, missing term 23201 and a(29)-a(33) from Hugo Pfoertner, Feb 02 2020
3 further terms < 10^6 added by Hugo Pfoertner, Aug 27 2022
Comments