A003421 Nonsquare values of m in the discriminant D = 4*m leading to a new maximum of the L-function of the Dirichlet series L(1) = Sum_{k>0} Kronecker(D,k)/k.
2, 3, 6, 7, 10, 19, 31, 34, 46, 79, 106, 151, 211, 214, 274, 331, 394, 631, 751, 919, 991, 1054, 1486, 1654, 2146, 2479, 2599, 3826, 5014, 5251, 7459, 8551, 9454, 10651, 13666, 18379, 22234, 32971, 39274, 45046, 48799, 61051, 62386, 74299, 78439, 84319, 111094
Offset: 1
Keywords
References
- D. Shanks, Systematic examination of Littlewood's bounds on L(1,chi), pp. 267-283 of Analytic Number Theory, ed. H. G. Diamond, Proc. Sympos. Pure Math., 24 (1973). Amer. Math. Soc.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- D. Shanks, Systematic examination of Littlewood's bounds on L(1,chi), Proc. Sympos. Pure Math., 24 (1973). Amer. Math. Soc. (Annotated scanned copy)
Extensions
New title, a(25)-a(47) from Hugo Pfoertner, Feb 07 2020
Comments