A003432 Hadamard maximal determinant problem: largest determinant of a (real) {0,1}-matrix of order n.
1, 1, 1, 2, 3, 5, 9, 32, 56, 144, 320, 1458, 3645, 9477, 25515, 131072, 327680, 1114112, 3411968, 19531250, 56640625, 195312500
Offset: 0
Examples
G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 9*x^6 + 32*x^7 + 56*x^8 + ... One of 2 ways to get determinant 9 with a 6 X 6 matrix, found by Williamson: 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 1 1 1 0
References
- J. Hadamard, Résolution d'une question relative aux déterminants, Bull. des Sciences Math. 2 (1893), 240-246.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 54.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Jan Brandts and A Cihangir, Enumeration and investigation of acute 0/1-simplices modulo the action of the hyperoctahedral group, arXiv preprint arXiv:1512.03044 [math.CO], 2015.
- J. Brenner, The Hadamard maximum determinant problem, Amer. Math. Monthly, 79 (1972), 626-630.
- R. P. Brent, W. P. Orrick, J. Osborn, and P. Zimmermann, Maximal determinants and saturated D-optimal designs of orders 19 and 37, arXiv:1112.4160 [math.CO], 2011. [From William P. Orrick, Dec 20 2011]
- Richard P. Brent and Judy-anne H. Osborn, On minors of maximal determinant matrices, arXiv preprint arXiv:1208.3819 [math.CO], 2012.
- Swee Hong Chan and Igor Pak, Computational complexity of counting coincidences, arXiv:2308.10214 [math.CO], 2023. See p. 18.
- V. Chasiotis, S. Kounias, and N. Farmakis, The D-optimal saturated designs of order 22, Discrete Mathematics 341 (2018), 380-387. Corrigendum ibid 342 (2019), 2161.
- H. Ehlich, Determinantenabschätzungen für binäre Matrizen, Math. Z. 83 (1964), 123-132.
- H. Ehlich and K. Zeller, Binäre Matrizen, Zeit. Angew. Math. Mech., 42 (1962), 20-21.
- J. Freixas and S. Kurz, On alpha-roughly weighted games, arXiv preprint arXiv:1112.2861 [math.CO], 2011.
- Matthew Hudelson, Victor Klee and David Larman, Largest j-simplices in d-cubes: some relatives of the Hadamard maximum determinant problem, Proceedings of the Fourth Conference of the International Linear Algebra Society (Rotterdam, 1994). Linear Algebra Appl. 241/243 (1996), 519-598.
- J. Huttenhain and C. Ikenmeyer, Binary Determinantal Complexity, arXiv:1410.8202 [cs.CC], 2014-2015.
- Yongbin Li, Junwei Zi, Yan Liu and Xiaojun Zhang, A note of values of minors for Hadamard matrices, arXiv:1905.04662 [math.CO], 2019.
- William P. Orrick, The maximal {-1, 1}-determinant of order 15, arXiv:math/0401179 [math.CO], 2004.
- William P. Orrick and B. Solomon, Large determinant sign matrices of order 4k+1, arXiv:math/0311292 [math.CO], 2003.
- William P. Orrick and B. Solomon, The Hadamard Maximal Determinant Problem (website)
- William P. Orrick, B. Solomon, R. Dowdeswell and W. D. Smith, New lower bounds for the maximal determinant problem, arXiv:math/0304410 [math.CO], 2003.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- Eric Weisstein's World of Mathematics, Hadamard's maximum determinant problem.
- Eric Weisstein's World of Mathematics, (0, 1)-Matrix
- Eric Weisstein's World of Mathematics, (-1, 0, 1)-Matrix
- J. Williamson, Determinants whose elements are 0 and 1, Amer. Math. Monthly 53 (1946), 427-434. Math. Rev. 8,128g.
- Luke Zeng, Shawn Xin, Avadesian Xu, Thomas Pang, Tim Yang and Maolin Zheng, Seele's New Anti-ASIC Consensus Algorithm with Emphasis on Matrix Computation, arXiv:1905.04565 [cs.CR], 2019.
- Chuanming Zong, What is known about unit cubes, Bull. Amer. Math. Soc., 42 (2005), 181-211.
- Index entries for sequences related to binary matrices
- Index entries for sequences related to Hadamard matrices
- Index entries for sequences related to maximal determinants
Extensions
a(18)-a(20) added by William P. Orrick, Dec 20 2011
a(21) added by Richard P. Brent, Aug 16 2021
Comments