cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003474 Generalized Euler phi function (for p=3).

Original entry on oeis.org

1, 4, 18, 32, 160, 324, 1456, 2048, 13122, 25600, 117128, 209952, 913952, 2119936, 9447840, 13107200, 86093440, 172186884, 774840976, 1310720000, 6964002864, 13718968384, 62761410632, 88159684608, 557885504000, 835308258304, 5083731656658, 8988257288192, 45753584909920, 89261680665600, 411782264189296, 564050001920000
Offset: 1

Views

Author

Keywords

Comments

For n >= 2, a(n) is the number of n X n circulant invertible matrices over GF(3). - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 22 2003

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003473 (p=2), A192037 (p=5).

Programs

  • Mathematica
    p = 3; numNormalp[n_] := Module[{r, i, pp}, pp = 1; Do[r = MultiplicativeOrder[p, d]; i = EulerPhi[d]/r; pp *= (1-1/p^r)^i, {d, Divisors[n]}]; Return[pp]]; numNormal[n_] := Module[{t, q, pp}, t=1; q=n; While[0==Mod[q, p], q /= p; t += 1]; pp = numNormalp[q]; pp *= p^n/n; Return[pp]]; a[n_] := If[n==1, 1, n*numNormal[n]]; Array[a, 40] (* Jean-François Alcover, Dec 10 2015, after Joerg Arndt *)
  • PARI
    p=3; /* global */
    num_normal_p(n)=
    {
        my( r, i, pp );
        pp = 1;
        fordiv (n, d,
            r = znorder(Mod(p,d));
            i = eulerphi(d)/r;
            pp *= (1 - 1/p^r)^i;
        );
        return( pp );
    }
    num_normal(n)=
    {
        my( t, q, pp );
        t = 1;  q = n;
        while ( 0==(q%p), q/=p; t+=1; );
        /* here: n==q*p^t */
        pp = num_normal_p(q);
        pp *= p^n/n;
        return( pp );
    }
    a(n)=if ( n==1, 1, n * num_normal(n) );
    v=vector(66,n,a(n))
    /* Joerg Arndt, Jul 03 2011 */

Extensions

Terms > 86093440 from Joerg Arndt, Jul 03 2011