cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A094678 a(n) = A003474(n)/n.

Original entry on oeis.org

1, 2, 6, 8, 32, 54, 208, 256, 1458, 2560, 10648, 17496, 70304, 151424, 629856, 819200, 5064320, 9565938, 40781104, 65536000, 331619184, 623589472, 2728756984, 3673320192, 22315420160, 32127240704, 188286357654, 321009188864, 1577709824480, 2975389355520, 13283298844816, 17626562560000
Offset: 1

Views

Author

Vladeta Jovovic, Jun 07 2004

Keywords

Comments

Number of normal bases for GF(3^n) over GF(3). - Joerg Arndt, Jul 03 2011
For n>=2, a(n) = f(n)/(2^(n-1)) where f(n) is the number of Hamiltonian cycles in the 3-ary de Bruijn graph (i.e., graph with 3*n nodes {0..3*n-1} and edges from each i to 3*i (mod 3*n), 3*i+1 (mod 3*n), and 3*i+2 (mod 3*n); cf. A192513). - Joerg Arndt, Jul 03 2011.
For details on this correspondence, see A192513. - Dmitrii Pasechnik, Dec 07 2014

Programs

  • Mathematica
    p = 3; numNormalp[n_] := Module[{r, i, pp = 1}, Do[r = MultiplicativeOrder[p, d]; i = EulerPhi[d]/r; pp *= (1 - 1/p^r)^i, {d, Divisors[n]}]; Return[pp]];
    a[1] = 1; a[n_] := Module[{t = 1, q = n, pp}, While[0 == Mod[q, p], q /= p; t += 1]; pp = numNormalp[q]; pp *= p^n/n; Return[pp]];
    Array[a, 40] (* Jean-François Alcover, Jul 22 2018, after Joerg Arndt *)
  • PARI
    a(n)=if(n==1,return(1));my(r,i,t=3^n/n);fordiv(n/3^valuation(n,3), d, r=znorder(Mod(3,d)); i=eulerphi(d)/r; t*=(1-1/3^r)^i);t \\ Charles R Greathouse IV, Jan 03 2013

Extensions

Terms > 5064320 by Joerg Arndt, Jul 03 2011

A003473 Generalized Euler phi function (for p=2).

Original entry on oeis.org

1, 2, 3, 8, 15, 24, 49, 128, 189, 480, 1023, 1536, 4095, 6272, 10125, 32768, 65025, 96768, 262143, 491520, 583443, 2095104, 4190209, 6291456, 15728625, 33546240, 49545027, 102760448, 268435455, 331776000, 887503681, 2147483648, 3211797501, 8522956800, 12325233375, 25367150592, 68719476735, 137438429184, 206007472125
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of n X n circulant invertible matrices over GF(2). - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 20 2003
From Geoffrey Critzer, Oct 13 2024: (Start)
a(n) is the number of units in the ring F_2[x]/.
Let T be the companion matrix of x^n-1 and let M_T be the F_2[x] module induced by T where the action is f*v = f(T)v. Then a(n) is the number of cyclic vectors in M_T.
a(n) is the number of elements in M_T whose local minimal polynomial is x^n-1.
a(n) is the order of the stabilizer subgroup of T under the action of conjugation.
a(n) is the number of polynomials f(x) in F_2[x] of degree < n such that
gcd(x^n-1,f(x)) = 1.
a(n) is the number of normal elements in the field F_2^n. (End)

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003474 (p=3), A192037 (p=5).
Cf. also A086479, A027362.

Programs

  • Mathematica
    p = 2; numNormalp[n_] := Module[{r, i, pp}, pp = 1; Do[r = MultiplicativeOrder[p, d]; i = EulerPhi[d]/r; pp *= (1 - 1/p^r)^i, {d, Divisors[n]}]; Return[pp]]; numNormal[n_] := Module[{t, q, pp }, t = 1;  q = n; While[0 == Mod[q, p], q /= p; t += 1]; pp = numNormalp[q]; pp *= p^n/n; Return[pp]]; a[n_] := n*numNormal[n]; Array[a, 40] (* Jean-François Alcover, Dec 10 2015, after Joerg Arndt *)
  • PARI
    p=2; /* global */
    num_normal_p(n)=
    {
        my( r, i, pp );
        pp = 1;
        fordiv (n, d,
            r = znorder(Mod(p,d));
            i = eulerphi(d)/r;
            pp *= (1 - 1/p^r)^i;
        );
        return( pp );
    }
    num_normal(n)=
    {
        my( t, q, pp );
        t = 1;  q = n;
        while ( 0==(q%p), q/=p; t+=1; );
        /* here: n==q*p^t */
        pp = num_normal_p(q);
        pp *= p^n/n;
        return( pp );
    }
    a(n)=n * num_normal(n);
    v=vector(66,n,a(n))  /* Joerg Arndt, Jul 03 2011 */

Formula

a(n) = n * A027362(n). - Vladeta Jovovic, Sep 09 2003

Extensions

More terms from Vladeta Jovovic, Sep 09 2003
Terms > 331776000 from Joerg Arndt, Jul 03 2011

A192037 Generalized Euler phi function (for p=5).

Original entry on oeis.org

1, 16, 96, 256, 2500, 9216, 62496, 147456, 1499904, 6250000, 39037504, 84934656, 971882496, 3905750016, 23437500000, 57415827456, 610351562496, 2249712009216, 15258773437504, 39062500000000, 366140629499904, 1523926718550016, 9536743164062496, 16231265527136256, 238418579101562500
Offset: 1

Views

Author

Joerg Arndt, Jul 03 2011

Keywords

Comments

For n>=2 a(n) is the number of n X n circulant invertible matrices over GF(5)

Crossrefs

Cf. A003473 (p=2), A003474 (p=3).

Programs

  • PARI
    /* see A003473, there set p=5 */

A192513 Number of Hamiltonian cycles in the 3-ary de Bruijn graph.

Original entry on oeis.org

2, 4, 24, 64, 512, 1728, 13312, 32768, 373248, 1310720, 10903552, 35831808, 287965184, 1240465408, 10319560704, 26843545600, 331895275520, 1253826625536, 10690521726976, 34359738368000, 347727917481984, 1307761908383744, 11445236333019136, 30814043149172736
Offset: 1

Views

Author

Joerg Arndt, Jul 03 2011

Keywords

Comments

The 3-ary de Bruijn graph is the graph with 3*n nodes {0..3*n-1} and edges from each i to 3*i (mod 3*n), 3*i+1 (mod 3*n), and 3*i+2 (mod 3*n).
Correctness of a(n) = A094678(n)*2^(n-1) for all n>1 follows from S. H. Chan et al. below, together with the BEST theorem. [Dmitrii Pasechnik, Dec 07 2014]

Crossrefs

Programs

  • Mathematica
    p = 3; numNormalp[n_] := Module[{r, i, pp = 1}, Do[r = MultiplicativeOrder[p, d]; i = EulerPhi[d]/r; pp *= (1 - 1/p^r)^i, {d, Divisors[n]}]; Return[pp]];
    a[n_] := Module[{t = 1, q = n, pp}, While[0 == Mod[q, p], q /= p; t += 1]; pp = numNormalp[q]; pp *= p^n/n; Return[pp*2^(n - 1)]];
    Array[a, 30] (* Jean-François Alcover, Jul 22 2018, after Joerg Arndt *)
  • PARI
    a(n)=if(n==1,return(2));my(r,i,t=3^n/n<<(n-1));fordiv(n/3^valuation(n,3), d, r=znorder(Mod(3,d)); i=eulerphi(d)/r; t*=(1-1/3^r)^i);t \\ See comments. Charles R Greathouse IV, Jan 03 2013

Formula

a(n) = A094678(n)*2^(n-1) for n > 1. [Joerg Arndt, Dec 07 2014, amended by Georg Fischer, Jun 21 2020]

Extensions

More terms from Dmitrii Pasechnik, Dec 07 2014
Showing 1-4 of 4 results.