A003473 Generalized Euler phi function (for p=2).
1, 2, 3, 8, 15, 24, 49, 128, 189, 480, 1023, 1536, 4095, 6272, 10125, 32768, 65025, 96768, 262143, 491520, 583443, 2095104, 4190209, 6291456, 15728625, 33546240, 49545027, 102760448, 268435455, 331776000, 887503681, 2147483648, 3211797501, 8522956800, 12325233375, 25367150592, 68719476735, 137438429184, 206007472125
Offset: 1
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- J. T. B. Beard Jr. and K. I. West, Factorization tables for x^n-1 over GF(q), Math. Comp., 28 (1974), 1167-1168.
- Swee Hong Chan, Henk D. L. Hollmann, and Dmitrii V. Pasechnik, Sandpile groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields, arXiv:1405.0113 [math.CO], (1-May-2014).
- Gabriele Fici and Estéban Gabory, Generalized De Bruijn Words, Invertible Necklaces, and the Burrows-Wheeler Transform, arXiv:2502.12844 [math.CO], 2025. See Table 2 p. 11.
Programs
-
Mathematica
p = 2; numNormalp[n_] := Module[{r, i, pp}, pp = 1; Do[r = MultiplicativeOrder[p, d]; i = EulerPhi[d]/r; pp *= (1 - 1/p^r)^i, {d, Divisors[n]}]; Return[pp]]; numNormal[n_] := Module[{t, q, pp }, t = 1; q = n; While[0 == Mod[q, p], q /= p; t += 1]; pp = numNormalp[q]; pp *= p^n/n; Return[pp]]; a[n_] := n*numNormal[n]; Array[a, 40] (* Jean-François Alcover, Dec 10 2015, after Joerg Arndt *)
-
PARI
p=2; /* global */ num_normal_p(n)= { my( r, i, pp ); pp = 1; fordiv (n, d, r = znorder(Mod(p,d)); i = eulerphi(d)/r; pp *= (1 - 1/p^r)^i; ); return( pp ); } num_normal(n)= { my( t, q, pp ); t = 1; q = n; while ( 0==(q%p), q/=p; t+=1; ); /* here: n==q*p^t */ pp = num_normal_p(q); pp *= p^n/n; return( pp ); } a(n)=n * num_normal(n); v=vector(66,n,a(n)) /* Joerg Arndt, Jul 03 2011 */
Formula
a(n) = n * A027362(n). - Vladeta Jovovic, Sep 09 2003
Extensions
More terms from Vladeta Jovovic, Sep 09 2003
Terms > 331776000 from Joerg Arndt, Jul 03 2011
Comments