cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A003473 Generalized Euler phi function (for p=2).

Original entry on oeis.org

1, 2, 3, 8, 15, 24, 49, 128, 189, 480, 1023, 1536, 4095, 6272, 10125, 32768, 65025, 96768, 262143, 491520, 583443, 2095104, 4190209, 6291456, 15728625, 33546240, 49545027, 102760448, 268435455, 331776000, 887503681, 2147483648, 3211797501, 8522956800, 12325233375, 25367150592, 68719476735, 137438429184, 206007472125
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of n X n circulant invertible matrices over GF(2). - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 20 2003
From Geoffrey Critzer, Oct 13 2024: (Start)
a(n) is the number of units in the ring F_2[x]/.
Let T be the companion matrix of x^n-1 and let M_T be the F_2[x] module induced by T where the action is f*v = f(T)v. Then a(n) is the number of cyclic vectors in M_T.
a(n) is the number of elements in M_T whose local minimal polynomial is x^n-1.
a(n) is the order of the stabilizer subgroup of T under the action of conjugation.
a(n) is the number of polynomials f(x) in F_2[x] of degree < n such that
gcd(x^n-1,f(x)) = 1.
a(n) is the number of normal elements in the field F_2^n. (End)

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003474 (p=3), A192037 (p=5).
Cf. also A086479, A027362.

Programs

  • Mathematica
    p = 2; numNormalp[n_] := Module[{r, i, pp}, pp = 1; Do[r = MultiplicativeOrder[p, d]; i = EulerPhi[d]/r; pp *= (1 - 1/p^r)^i, {d, Divisors[n]}]; Return[pp]]; numNormal[n_] := Module[{t, q, pp }, t = 1;  q = n; While[0 == Mod[q, p], q /= p; t += 1]; pp = numNormalp[q]; pp *= p^n/n; Return[pp]]; a[n_] := n*numNormal[n]; Array[a, 40] (* Jean-François Alcover, Dec 10 2015, after Joerg Arndt *)
  • PARI
    p=2; /* global */
    num_normal_p(n)=
    {
        my( r, i, pp );
        pp = 1;
        fordiv (n, d,
            r = znorder(Mod(p,d));
            i = eulerphi(d)/r;
            pp *= (1 - 1/p^r)^i;
        );
        return( pp );
    }
    num_normal(n)=
    {
        my( t, q, pp );
        t = 1;  q = n;
        while ( 0==(q%p), q/=p; t+=1; );
        /* here: n==q*p^t */
        pp = num_normal_p(q);
        pp *= p^n/n;
        return( pp );
    }
    a(n)=n * num_normal(n);
    v=vector(66,n,a(n))  /* Joerg Arndt, Jul 03 2011 */

Formula

a(n) = n * A027362(n). - Vladeta Jovovic, Sep 09 2003

Extensions

More terms from Vladeta Jovovic, Sep 09 2003
Terms > 331776000 from Joerg Arndt, Jul 03 2011

A003474 Generalized Euler phi function (for p=3).

Original entry on oeis.org

1, 4, 18, 32, 160, 324, 1456, 2048, 13122, 25600, 117128, 209952, 913952, 2119936, 9447840, 13107200, 86093440, 172186884, 774840976, 1310720000, 6964002864, 13718968384, 62761410632, 88159684608, 557885504000, 835308258304, 5083731656658, 8988257288192, 45753584909920, 89261680665600, 411782264189296, 564050001920000
Offset: 1

Views

Author

Keywords

Comments

For n >= 2, a(n) is the number of n X n circulant invertible matrices over GF(3). - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 22 2003

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003473 (p=2), A192037 (p=5).

Programs

  • Mathematica
    p = 3; numNormalp[n_] := Module[{r, i, pp}, pp = 1; Do[r = MultiplicativeOrder[p, d]; i = EulerPhi[d]/r; pp *= (1-1/p^r)^i, {d, Divisors[n]}]; Return[pp]]; numNormal[n_] := Module[{t, q, pp}, t=1; q=n; While[0==Mod[q, p], q /= p; t += 1]; pp = numNormalp[q]; pp *= p^n/n; Return[pp]]; a[n_] := If[n==1, 1, n*numNormal[n]]; Array[a, 40] (* Jean-François Alcover, Dec 10 2015, after Joerg Arndt *)
  • PARI
    p=3; /* global */
    num_normal_p(n)=
    {
        my( r, i, pp );
        pp = 1;
        fordiv (n, d,
            r = znorder(Mod(p,d));
            i = eulerphi(d)/r;
            pp *= (1 - 1/p^r)^i;
        );
        return( pp );
    }
    num_normal(n)=
    {
        my( t, q, pp );
        t = 1;  q = n;
        while ( 0==(q%p), q/=p; t+=1; );
        /* here: n==q*p^t */
        pp = num_normal_p(q);
        pp *= p^n/n;
        return( pp );
    }
    a(n)=if ( n==1, 1, n * num_normal(n) );
    v=vector(66,n,a(n))
    /* Joerg Arndt, Jul 03 2011 */

Extensions

Terms > 86093440 from Joerg Arndt, Jul 03 2011
Showing 1-2 of 2 results.