A027362
Number of Hamiltonian cycles in the directed graph with 2n nodes {0..2n-1} and edges from each i to 2i (mod 2n) and to 2i+1 (mod 2n).
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 7, 16, 21, 48, 93, 128, 315, 448, 675, 2048, 3825, 5376, 13797, 24576, 27783, 95232, 182183, 262144, 629145, 1290240, 1835001, 3670016, 9256395, 11059200, 28629151, 67108864, 97327197, 250675200, 352149525, 704643072, 1857283155, 3616800768
Offset: 1
Clone Lester (aflms(AT)cts1.cats.alaska.edu)
The solutions for n=1, 2 and 3 are
0 1;
0 1 3 2;
0 1 2 5 4 3.
The 4 solutions for n=6 are
0 1 2 4 8 5 11 10 9 7 3 6;
0 1 2 5 11 10 8 4 9 7 3 6;
0 1 3 7 2 4 8 5 11 10 9 6;
0 1 3 7 2 5 11 10 8 4 9 6.
- Joe McCauley, Posting to sci.math (by jmccaul(AT)iatcmail.ed.ray.com). [Date?]
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 130 terms from Joerg Arndt)
- Joerg Arndt, Matters Computational (The Fxtbook), p.904.
- Swee Hong Chan, Henk D. L. Hollmann and Dmitrii V. Pasechnik, Critical groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields, arXiv: 1312.2114 [math.CO], 2013.
- Swee Hong Chan, Henk D. L. Hollmann, Dmitrii V. Pasechnik, Sandpile groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields, arXiv:1405.0113 [math.CO], (1-May-2014).
- Swee Hong Chan, Henk D. L. Hollmann, Dmitrii V. Pasechnik, Sandpile groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields, Journal of Algebra (2015), pp. 268-295. [_Dmitrii Pasechnik_, Dec 05 2014]
- S. V. Duzhin, D. V. Pasechnik, Groups acting on necklaces and sandpile groups, 2014. See Section 3, History. - _N. J. A. Sloane_, Jun 30 2014
- Gabriele Fici and Estéban Gabory, Generalized De Bruijn Words, Invertible Necklaces, and the Burrows-Wheeler Transform, arXiv:2502.12844 [math.CO], 2025. See Table 1. p. 7.
- Lionel Levine, Sandpile groups and spanning trees of directed line graphs, arXiv:0906.2809 [math.CO], 2009-2010.
- Lionel Levine, Sandpile groups and spanning trees of directed line graphs, J. Combin. Th. (A) 118(2011), 350-364.
- Wikipedia, BEST Theorem.
-
p = 2; numNormalp[n_] := Module[{r, i, pp}, pp = 1; Do[r = MultiplicativeOrder[p, d]; i = EulerPhi[d]/r; pp *= (1 - 1/p^r)^i, {d, Divisors[n]}]; Return[pp]];
a[n_] := Module[{t, q, pp}, t = 1; q = n; While[0 == Mod[q, p], q /= p; t += 1]; pp = numNormalp[q]; pp *= p^n/n; Return[pp]];
Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Joerg Arndt *)
-
/* from p.907 of the Fxtbook */
p=2; /* global */
num_normal_p(n)=
{
local( r, i, pp );
pp = 1;
fordiv (n, d,
r = znorder(Mod(p,d));
i = eulerphi(d)/r;
pp *= (1 - 1/p^r)^i;
);
return( pp );
}
num_normal(n)=
{
local( t, q, pp );
t = 1; q = n;
while ( 0==(q%p), q/=p; t+=1; );
/* here: n==q*p^t */
pp = num_normal_p(q);
pp *= p^n/n;
return( pp );
}
a(n) = num_normal(n);
vector(66,n,a(n)) /* Joerg Arndt, Jul 03 2011 */
-
# version 4.7
def dg(n): # this gives the graph in the 3rd description
g = DiGraph(loops=True)
for i in range(n): g.add_vertex();
for i in range(n):
g.add_edge(i, mod(2*i, n));
g.add_edge(i, mod(1+2*i, n));
return g;
def A027362(n): # this gives the number of spanning trees
return dg(n).laplacian_matrix().submatrix(1, 1).det();
# Dmitrii Pasechnik, Aug 14 2011
A086323
Number of n X n circulant invertible (0,1) matrices over the reals.
Original entry on oeis.org
1, 2, 6, 8, 30, 36, 126, 160, 450, 740, 2046, 2592, 8190, 12824, 30030, 48640, 131070, 194508, 524286, 812840, 1987818, 3486824, 8388606, 12400368, 33348150, 56700072, 128800098, 219681672, 536870910, 861181320, 2147483646, 3555730432
Offset: 1
Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 30 2003
A003474
Generalized Euler phi function (for p=3).
Original entry on oeis.org
1, 4, 18, 32, 160, 324, 1456, 2048, 13122, 25600, 117128, 209952, 913952, 2119936, 9447840, 13107200, 86093440, 172186884, 774840976, 1310720000, 6964002864, 13718968384, 62761410632, 88159684608, 557885504000, 835308258304, 5083731656658, 8988257288192, 45753584909920, 89261680665600, 411782264189296, 564050001920000
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
p = 3; numNormalp[n_] := Module[{r, i, pp}, pp = 1; Do[r = MultiplicativeOrder[p, d]; i = EulerPhi[d]/r; pp *= (1-1/p^r)^i, {d, Divisors[n]}]; Return[pp]]; numNormal[n_] := Module[{t, q, pp}, t=1; q=n; While[0==Mod[q, p], q /= p; t += 1]; pp = numNormalp[q]; pp *= p^n/n; Return[pp]]; a[n_] := If[n==1, 1, n*numNormal[n]]; Array[a, 40] (* Jean-François Alcover, Dec 10 2015, after Joerg Arndt *)
-
p=3; /* global */
num_normal_p(n)=
{
my( r, i, pp );
pp = 1;
fordiv (n, d,
r = znorder(Mod(p,d));
i = eulerphi(d)/r;
pp *= (1 - 1/p^r)^i;
);
return( pp );
}
num_normal(n)=
{
my( t, q, pp );
t = 1; q = n;
while ( 0==(q%p), q/=p; t+=1; );
/* here: n==q*p^t */
pp = num_normal_p(q);
pp *= p^n/n;
return( pp );
}
a(n)=if ( n==1, 1, n * num_normal(n) );
v=vector(66,n,a(n))
/* Joerg Arndt, Jul 03 2011 */
A086324
Number of n X n circulant singular matrices over GF(2).
Original entry on oeis.org
1, 2, 5, 8, 17, 40, 79, 128, 323, 544, 1025, 2560, 4097, 10112, 22643, 32768, 66047, 165376, 262145, 557056, 1513709, 2099200, 4198399, 10485760, 17825807, 33562624, 84672701, 165675008, 268435457, 741965824, 1259979967, 2147483648, 5378137091, 8656912384
Offset: 1
Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 30 2003
A192037
Generalized Euler phi function (for p=5).
Original entry on oeis.org
1, 16, 96, 256, 2500, 9216, 62496, 147456, 1499904, 6250000, 39037504, 84934656, 971882496, 3905750016, 23437500000, 57415827456, 610351562496, 2249712009216, 15258773437504, 39062500000000, 366140629499904, 1523926718550016, 9536743164062496, 16231265527136256, 238418579101562500
Offset: 1
A192513
Number of Hamiltonian cycles in the 3-ary de Bruijn graph.
Original entry on oeis.org
2, 4, 24, 64, 512, 1728, 13312, 32768, 373248, 1310720, 10903552, 35831808, 287965184, 1240465408, 10319560704, 26843545600, 331895275520, 1253826625536, 10690521726976, 34359738368000, 347727917481984, 1307761908383744, 11445236333019136, 30814043149172736
Offset: 1
- Swee Hong Chan, Henk D. L. Hollmann, Dmitrii V. Pasechnik, Sandpile groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields, arXiv:1405.0113 [math.CO], (1-May-2014).
- Swee Hong Chan, Henk D. L. Hollmann, Dmitrii V. Pasechnik, Sandpile groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields, Journal of Algebra (2015), pp. 268-295.
- Gabriele Fici and Estéban Gabory, Generalized De Bruijn Words, Invertible Necklaces, and the Burrows-Wheeler Transform, arXiv:2502.12844 [math.CO], 2025. See Table 1. p. 7.
- Wikipedia, BEST Theorem [_Dmitrii Pasechnik_, Dec 07 2014]
-
p = 3; numNormalp[n_] := Module[{r, i, pp = 1}, Do[r = MultiplicativeOrder[p, d]; i = EulerPhi[d]/r; pp *= (1 - 1/p^r)^i, {d, Divisors[n]}]; Return[pp]];
a[n_] := Module[{t = 1, q = n, pp}, While[0 == Mod[q, p], q /= p; t += 1]; pp = numNormalp[q]; pp *= p^n/n; Return[pp*2^(n - 1)]];
Array[a, 30] (* Jean-François Alcover, Jul 22 2018, after Joerg Arndt *)
-
a(n)=if(n==1,return(2));my(r,i,t=3^n/n<<(n-1));fordiv(n/3^valuation(n,3), d, r=znorder(Mod(3,d)); i=eulerphi(d)/r; t*=(1-1/3^r)^i);t \\ See comments. Charles R Greathouse IV, Jan 03 2013
A086479
Number of invertible circulant (0,1) matrices over the reals that have even determinant.
Original entry on oeis.org
0, 0, 3, 0, 15, 12, 77, 32, 261, 260, 1023, 1056, 4095, 6552, 19905, 15872, 66045, 97740, 262143, 321320, 1404375, 1391720, 4198397, 6108912, 17619525, 23153832, 79255071, 116921224, 268435455, 529405320, 1259979965, 1408246784
Offset: 1
Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 09 2003
A330694
Triangular array read by rows. T(n,k) is the number of k-normal elements in GF(2^n), n >= 1, 0 <= k <= n-1.
Original entry on oeis.org
1, 2, 1, 3, 3, 1, 8, 4, 2, 1, 15, 15, 0, 0, 1, 24, 12, 18, 3, 5, 1, 49, 49, 0, 14, 14, 0, 1, 128, 64, 32, 16, 8, 4, 2, 1, 189, 189, 63, 63, 0, 0, 3, 3, 1, 480, 240, 240, 0, 30, 15, 15, 0, 2, 1, 1023, 1023, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1536, 768, 768, 384, 384, 96, 96, 24, 26, 7, 5, 1, 4095, 4095, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Triangle begins
1;
2, 1;
3, 3, 1;
8, 4, 2, 1;
15, 15, 0, 0, 1;
24, 12, 18, 3, 5, 1;
49, 49, 0, 14, 14, 0, 1;
128, 64, 32, 16, 8, 4, 2, 1;
189, 189, 63, 63, 0, 0, 3, 3, 1;
480, 240, 240, 0, 30, 15, 15, 0, 2, 1;
1023, 1023, 0, 0, 0, 0, 0, 0, 0, 0, 1;
1536, 768, 768, 384, 384, 96, 96, 24, 26, 7, 5, 1;
4095, 4095, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
- S. Huczynska, G. Mullen, D. Panario, and D. Thomson, Existences and properties of k-normal elements over finite fields, Finite Fields and Their Applications, 24 (2013), 170-183.
- Zülfükar Saygi, Ernist Tilenbaev, Çetin Ürtiş, On the number of k-normal elements over finite fields, Turk J Math., (2019) 43.795.812.
- David Thompson, Something about normal bases over finite fields, Existence and properties of k-normal elements over finite fields, Slides, (2013).
-
Needs["FiniteFields`"];Table[b = Map[GF[2^n][#] &, Tuples[{0, 1}, n]];
Table[Count[Table[MatrixRank[Table[b[[i]]^(2^k), {k, 0, n - 1}][[All, 1]],
Modulus -> 2], {i, 2, 2^n}], k], {k, 1, n}] // Reverse, {n, 1, 8}] // Grid
A335804
Number of n X n matrices over GF(2) with minimal polynomial x^n - 1.
Original entry on oeis.org
1, 3, 56, 2520, 666624, 839946240, 3343877406720, 41781748196966400, 3701652434038082764800, 763416952708225267547504640, 750836199529096452135514747699200
Offset: 1
A375729
Irregular triangular array read by rows. T(n,k) is the number of monic irreducible polynomials of degree n in F_2[x] that are k-normal, n>=1, k>=0 .
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 3, 3, 4, 2, 3, 7, 7, 0, 2, 2, 16, 8, 4, 2, 21, 21, 7, 7, 48, 24, 24, 0, 3, 93, 93, 128, 64, 64, 32, 32, 8, 6, 1, 315, 315, 448, 224, 224, 112, 56, 56, 23, 8, 8, 2, 675, 675, 225, 225, 135, 135, 45, 45, 9, 9, 2, 2, 2048, 1024, 512, 256, 128, 64, 32, 16, 3825, 3825, 0, 0, 0, 0, 0, 0, 30, 30
Offset: 1
Triangle begins ...
1, 1;
1;
1, 1;
2, 1;
3, 3;
4, 2, 3;
7, 7, 0, 2, 2;
16, 8, 4, 2;
21, 21, 7, 7;
48, 24, 24, 0, 3;
93, 93;
128, 64, 64, 32, 32, 8, 6, 1;
315, 315;
448, 224, 224, 112, 56, 56, 23, 8, 8, 2;
675, 675, 225, 225, 135, 135, 45, 45, 9, 9, 2, 2;
2048, 1024, 512, 256, 128, 64, 32, 16;
3825, 3825, 0, 0, 0, 0, 0, 0, 30, 30;
...
T(6,1) = 2 because we have 1+X+X^6 and 1+X+X^3+X^4+X^6.
- M. Alizadeh, M Darafsheh, and S. Mehrabi, On the k-normal elements and polynomials over finite fields, Italian Journal of Pure and Applied Mathematics, 39 (2018), 451-464.
- S. Huczynska, G. Mullen, D. Panario, and D. Thomson, Existences and properties of k-normal elements over finite fileds, Finite Fields and Their Applications, 24 (2013), 170-183.
-
knormalcy[lyndonword_, n_] := n - MatrixRank[Table[RotateRight[lyndonword, k], {k, 0, n - 1}], Modulus -> 2]; Map[Table[Count[#, i], {i, 0, Max[#]}] &,Table[orbit[word_] := Table[RotateLeft[word, k], {k, 0, nn - 1}]; c = Select[DeleteDuplicates[Map[Sort, Map[orbit, Tuples[{0, 1}, nn]] /. Table[Tuples[{0, 1}, nn][[i]] -> i - 1, {i, 1, 2^nn}]]], Length[DeleteDuplicates[#]] == nn &][[All, 1]]; Map[knormalcy[#, nn] &, Table[Tuples[{0, 1}, nn][[i]], {i, 1, 2^nn}][[c + 1]]], {nn, 1, 5}]]
Showing 1-10 of 10 results.
Comments