cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A003473 Generalized Euler phi function (for p=2).

Original entry on oeis.org

1, 2, 3, 8, 15, 24, 49, 128, 189, 480, 1023, 1536, 4095, 6272, 10125, 32768, 65025, 96768, 262143, 491520, 583443, 2095104, 4190209, 6291456, 15728625, 33546240, 49545027, 102760448, 268435455, 331776000, 887503681, 2147483648, 3211797501, 8522956800, 12325233375, 25367150592, 68719476735, 137438429184, 206007472125
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of n X n circulant invertible matrices over GF(2). - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 20 2003
From Geoffrey Critzer, Oct 13 2024: (Start)
a(n) is the number of units in the ring F_2[x]/.
Let T be the companion matrix of x^n-1 and let M_T be the F_2[x] module induced by T where the action is f*v = f(T)v. Then a(n) is the number of cyclic vectors in M_T.
a(n) is the number of elements in M_T whose local minimal polynomial is x^n-1.
a(n) is the order of the stabilizer subgroup of T under the action of conjugation.
a(n) is the number of polynomials f(x) in F_2[x] of degree < n such that
gcd(x^n-1,f(x)) = 1.
a(n) is the number of normal elements in the field F_2^n. (End)

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003474 (p=3), A192037 (p=5).
Cf. also A086479, A027362.

Programs

  • Mathematica
    p = 2; numNormalp[n_] := Module[{r, i, pp}, pp = 1; Do[r = MultiplicativeOrder[p, d]; i = EulerPhi[d]/r; pp *= (1 - 1/p^r)^i, {d, Divisors[n]}]; Return[pp]]; numNormal[n_] := Module[{t, q, pp }, t = 1;  q = n; While[0 == Mod[q, p], q /= p; t += 1]; pp = numNormalp[q]; pp *= p^n/n; Return[pp]]; a[n_] := n*numNormal[n]; Array[a, 40] (* Jean-François Alcover, Dec 10 2015, after Joerg Arndt *)
  • PARI
    p=2; /* global */
    num_normal_p(n)=
    {
        my( r, i, pp );
        pp = 1;
        fordiv (n, d,
            r = znorder(Mod(p,d));
            i = eulerphi(d)/r;
            pp *= (1 - 1/p^r)^i;
        );
        return( pp );
    }
    num_normal(n)=
    {
        my( t, q, pp );
        t = 1;  q = n;
        while ( 0==(q%p), q/=p; t+=1; );
        /* here: n==q*p^t */
        pp = num_normal_p(q);
        pp *= p^n/n;
        return( pp );
    }
    a(n)=n * num_normal(n);
    v=vector(66,n,a(n))  /* Joerg Arndt, Jul 03 2011 */

Formula

a(n) = n * A027362(n). - Vladeta Jovovic, Sep 09 2003

Extensions

More terms from Vladeta Jovovic, Sep 09 2003
Terms > 331776000 from Joerg Arndt, Jul 03 2011

A107222 Number of primitive normal polynomials of degree n over GF(2).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 7, 7, 19, 29, 87, 52, 315, 291, 562, 1017, 3825, 2870, 13797, 11255, 23579, 59986, 178259, 103680, 607522, 859849, 1551227, 1815045, 9203747, 5505966, 28629151, 33552327, 78899078, 167112969, 333342388, 267841392, 1848954877, 2411186731
Offset: 1

Views

Author

Joerg Arndt, Jun 08 2005, Oct 15 2005

Keywords

Comments

No formula for the terms is currently known. [Joerg Arndt, Apr 02 2011]

Examples

			a(9) = 19 because there are 19 primitive normal polynomials of degree 9 over GF(2).
		

Crossrefs

Extensions

Three more terms added from the Arndt website by N. J. A. Sloane, Feb 22 2008
Terms a(34)..a(38) from Joerg Arndt, Apr 17 2016

A192513 Number of Hamiltonian cycles in the 3-ary de Bruijn graph.

Original entry on oeis.org

2, 4, 24, 64, 512, 1728, 13312, 32768, 373248, 1310720, 10903552, 35831808, 287965184, 1240465408, 10319560704, 26843545600, 331895275520, 1253826625536, 10690521726976, 34359738368000, 347727917481984, 1307761908383744, 11445236333019136, 30814043149172736
Offset: 1

Views

Author

Joerg Arndt, Jul 03 2011

Keywords

Comments

The 3-ary de Bruijn graph is the graph with 3*n nodes {0..3*n-1} and edges from each i to 3*i (mod 3*n), 3*i+1 (mod 3*n), and 3*i+2 (mod 3*n).
Correctness of a(n) = A094678(n)*2^(n-1) for all n>1 follows from S. H. Chan et al. below, together with the BEST theorem. [Dmitrii Pasechnik, Dec 07 2014]

Crossrefs

Programs

  • Mathematica
    p = 3; numNormalp[n_] := Module[{r, i, pp = 1}, Do[r = MultiplicativeOrder[p, d]; i = EulerPhi[d]/r; pp *= (1 - 1/p^r)^i, {d, Divisors[n]}]; Return[pp]];
    a[n_] := Module[{t = 1, q = n, pp}, While[0 == Mod[q, p], q /= p; t += 1]; pp = numNormalp[q]; pp *= p^n/n; Return[pp*2^(n - 1)]];
    Array[a, 30] (* Jean-François Alcover, Jul 22 2018, after Joerg Arndt *)
  • PARI
    a(n)=if(n==1,return(2));my(r,i,t=3^n/n<<(n-1));fordiv(n/3^valuation(n,3), d, r=znorder(Mod(3,d)); i=eulerphi(d)/r; t*=(1-1/3^r)^i);t \\ See comments. Charles R Greathouse IV, Jan 03 2013

Formula

a(n) = A094678(n)*2^(n-1) for n > 1. [Joerg Arndt, Dec 07 2014, amended by Georg Fischer, Jun 21 2020]

Extensions

More terms from Dmitrii Pasechnik, Dec 07 2014

A335804 Number of n X n matrices over GF(2) with minimal polynomial x^n - 1.

Original entry on oeis.org

1, 3, 56, 2520, 666624, 839946240, 3343877406720, 41781748196966400, 3701652434038082764800, 763416952708225267547504640, 750836199529096452135514747699200
Offset: 1

Views

Author

Christof Beierle, Jun 24 2020

Keywords

Comments

a(n) is the size of the conjugacy class in GL(n,GF(2)) corresponding to the companion matrix of x^n - 1. It can be given by the number of n X n invertible matrices over GF(2) divided by the number of n X n circulant invertible matrices over GF(2) (i.e., the centralizer of the companion matrix of x^n - 1).
If m is odd, x^m-1 has no multiple roots so that every matrix with characteristic polynomial x^m-1 also has x^m-1 as its minimal polynomial. Hence, a(m) = A089035(m). - Geoffrey Critzer, Jul 24 2025

Crossrefs

Formula

a(n) = A002884(n) / A003473(n). If n is an odd prime, then a(n) = A089035(n).

A191744 Number of Hamiltonian cycles in the 5-ary De Bruijn graph.

Original entry on oeis.org

24, 1152, 110592, 5308416, 995328000
Offset: 1

Views

Author

Joerg Arndt, Jul 03 2011

Keywords

Comments

The 5-ary De Bruijn graph is the graph with 5*n nodes {0..5*n-1} and edges from each i to 5*i + j (mod 5*n), for 0<=j<5.

Crossrefs

Cf. A027362 (2-ary graph), A192513 (3-ary graph).

A272033 Number of irreducible normal polynomials of degree n over GF(2) that are not primitive.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 9, 2, 19, 6, 76, 0, 157, 113, 1031, 0, 2506, 0, 13321, 4204, 35246, 3924, 158464, 21623, 430391, 283774, 1854971, 52648, 5553234, 0, 33556537, 18428119, 83562231, 18807137, 436801680, 8328278, 1205614037
Offset: 1

Views

Author

Joerg Arndt, Apr 18 2016

Keywords

Crossrefs

Cf. A027362 (primitive normal polynomials), A107222.

Formula

a(n) = A027362(n) - A107222(n).
a(n) = 0 if 2^n - 1 is prime.

A375729 Irregular triangular array read by rows. T(n,k) is the number of monic irreducible polynomials of degree n in F_2[x] that are k-normal, n>=1, k>=0 .

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 3, 4, 2, 3, 7, 7, 0, 2, 2, 16, 8, 4, 2, 21, 21, 7, 7, 48, 24, 24, 0, 3, 93, 93, 128, 64, 64, 32, 32, 8, 6, 1, 315, 315, 448, 224, 224, 112, 56, 56, 23, 8, 8, 2, 675, 675, 225, 225, 135, 135, 45, 45, 9, 9, 2, 2, 2048, 1024, 512, 256, 128, 64, 32, 16, 3825, 3825, 0, 0, 0, 0, 0, 0, 30, 30
Offset: 1

Views

Author

Geoffrey Critzer, Aug 25 2024

Keywords

Comments

A monic irreducible polynomial of degree n in F_q[x] is k-normal if the span of its roots (expressed as a q-ary word with respect to any normal basis) in F_q^n has dimension n-k. For a more detailed definition of a k-normal polynomial see the abstract of the Alizadeh, Darafsheh, Mehrabi link below.
Conjecture: Let alpha be in F_q^n. Write alpha as a q-ary word w with respect to the standard polynomial basis (1,x,x^2,x^3,...,x^(n-1)). Let beta in F_q^n be the q-ary word w interpreted with respect to any normal basis. Then beta is a root of a k-normal polynomial iff the period of w = n and deg(gcd(alpha,x^n-1))=k.

Examples

			 Triangle begins ...
    1,     1;
    1;
    1,     1;
    2,     1;
    3,     3;
    4,     2,   3;
    7,     7,   0,   2,   2;
   16,     8,   4,   2;
   21,    21,   7,   7;
   48,    24,  24,   0,   3;
   93,    93;
  128,    64,  64,  32,  32,   8,  6,  1;
  315,   315;
  448,   224, 224, 112,  56,  56, 23,  8,  8,  2;
  675,   675, 225, 225, 135, 135, 45, 45,  9,  9, 2, 2;
  2048, 1024, 512, 256, 128,  64, 32, 16;
  3825, 3825,   0,   0,   0,   0,  0,  0, 30, 30;
  ...
 T(6,1) = 2 because we have 1+X+X^6 and 1+X+X^3+X^4+X^6.
		

Crossrefs

Cf. A001037 (row sums), A027362 (column k=0), A330694, A003473.

Programs

  • Mathematica
    knormalcy[lyndonword_, n_] := n - MatrixRank[Table[RotateRight[lyndonword, k], {k, 0, n - 1}], Modulus -> 2]; Map[Table[Count[#, i], {i, 0, Max[#]}] &,Table[orbit[word_] := Table[RotateLeft[word, k], {k, 0, nn - 1}]; c = Select[DeleteDuplicates[Map[Sort, Map[orbit, Tuples[{0, 1}, nn]] /. Table[Tuples[{0, 1}, nn][[i]] -> i - 1, {i, 1, 2^nn}]]], Length[DeleteDuplicates[#]] == nn &][[All, 1]]; Map[knormalcy[#, nn] &, Table[Tuples[{0, 1}, nn][[i]], {i, 1, 2^nn}][[c + 1]]], {nn, 1, 5}]]
Showing 1-7 of 7 results.