A003473
Generalized Euler phi function (for p=2).
Original entry on oeis.org
1, 2, 3, 8, 15, 24, 49, 128, 189, 480, 1023, 1536, 4095, 6272, 10125, 32768, 65025, 96768, 262143, 491520, 583443, 2095104, 4190209, 6291456, 15728625, 33546240, 49545027, 102760448, 268435455, 331776000, 887503681, 2147483648, 3211797501, 8522956800, 12325233375, 25367150592, 68719476735, 137438429184, 206007472125
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- J. T. B. Beard Jr. and K. I. West, Factorization tables for x^n-1 over GF(q), Math. Comp., 28 (1974), 1167-1168.
- Swee Hong Chan, Henk D. L. Hollmann, and Dmitrii V. Pasechnik, Sandpile groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields, arXiv:1405.0113 [math.CO], (1-May-2014).
- Gabriele Fici and Estéban Gabory, Generalized De Bruijn Words, Invertible Necklaces, and the Burrows-Wheeler Transform, arXiv:2502.12844 [math.CO], 2025. See Table 2 p. 11.
-
p = 2; numNormalp[n_] := Module[{r, i, pp}, pp = 1; Do[r = MultiplicativeOrder[p, d]; i = EulerPhi[d]/r; pp *= (1 - 1/p^r)^i, {d, Divisors[n]}]; Return[pp]]; numNormal[n_] := Module[{t, q, pp }, t = 1; q = n; While[0 == Mod[q, p], q /= p; t += 1]; pp = numNormalp[q]; pp *= p^n/n; Return[pp]]; a[n_] := n*numNormal[n]; Array[a, 40] (* Jean-François Alcover, Dec 10 2015, after Joerg Arndt *)
-
p=2; /* global */
num_normal_p(n)=
{
my( r, i, pp );
pp = 1;
fordiv (n, d,
r = znorder(Mod(p,d));
i = eulerphi(d)/r;
pp *= (1 - 1/p^r)^i;
);
return( pp );
}
num_normal(n)=
{
my( t, q, pp );
t = 1; q = n;
while ( 0==(q%p), q/=p; t+=1; );
/* here: n==q*p^t */
pp = num_normal_p(q);
pp *= p^n/n;
return( pp );
}
a(n)=n * num_normal(n);
v=vector(66,n,a(n)) /* Joerg Arndt, Jul 03 2011 */
A107222
Number of primitive normal polynomials of degree n over GF(2).
Original entry on oeis.org
1, 1, 1, 1, 3, 3, 7, 7, 19, 29, 87, 52, 315, 291, 562, 1017, 3825, 2870, 13797, 11255, 23579, 59986, 178259, 103680, 607522, 859849, 1551227, 1815045, 9203747, 5505966, 28629151, 33552327, 78899078, 167112969, 333342388, 267841392, 1848954877, 2411186731
Offset: 1
a(9) = 19 because there are 19 primitive normal polynomials of degree 9 over GF(2).
Three more terms added from the Arndt website by
N. J. A. Sloane, Feb 22 2008
A192513
Number of Hamiltonian cycles in the 3-ary de Bruijn graph.
Original entry on oeis.org
2, 4, 24, 64, 512, 1728, 13312, 32768, 373248, 1310720, 10903552, 35831808, 287965184, 1240465408, 10319560704, 26843545600, 331895275520, 1253826625536, 10690521726976, 34359738368000, 347727917481984, 1307761908383744, 11445236333019136, 30814043149172736
Offset: 1
- Swee Hong Chan, Henk D. L. Hollmann, Dmitrii V. Pasechnik, Sandpile groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields, arXiv:1405.0113 [math.CO], (1-May-2014).
- Swee Hong Chan, Henk D. L. Hollmann, Dmitrii V. Pasechnik, Sandpile groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields, Journal of Algebra (2015), pp. 268-295.
- Gabriele Fici and Estéban Gabory, Generalized De Bruijn Words, Invertible Necklaces, and the Burrows-Wheeler Transform, arXiv:2502.12844 [math.CO], 2025. See Table 1. p. 7.
- Wikipedia, BEST Theorem [_Dmitrii Pasechnik_, Dec 07 2014]
-
p = 3; numNormalp[n_] := Module[{r, i, pp = 1}, Do[r = MultiplicativeOrder[p, d]; i = EulerPhi[d]/r; pp *= (1 - 1/p^r)^i, {d, Divisors[n]}]; Return[pp]];
a[n_] := Module[{t = 1, q = n, pp}, While[0 == Mod[q, p], q /= p; t += 1]; pp = numNormalp[q]; pp *= p^n/n; Return[pp*2^(n - 1)]];
Array[a, 30] (* Jean-François Alcover, Jul 22 2018, after Joerg Arndt *)
-
a(n)=if(n==1,return(2));my(r,i,t=3^n/n<<(n-1));fordiv(n/3^valuation(n,3), d, r=znorder(Mod(3,d)); i=eulerphi(d)/r; t*=(1-1/3^r)^i);t \\ See comments. Charles R Greathouse IV, Jan 03 2013
A335804
Number of n X n matrices over GF(2) with minimal polynomial x^n - 1.
Original entry on oeis.org
1, 3, 56, 2520, 666624, 839946240, 3343877406720, 41781748196966400, 3701652434038082764800, 763416952708225267547504640, 750836199529096452135514747699200
Offset: 1
A191744
Number of Hamiltonian cycles in the 5-ary De Bruijn graph.
Original entry on oeis.org
24, 1152, 110592, 5308416, 995328000
Offset: 1
A272033
Number of irreducible normal polynomials of degree n over GF(2) that are not primitive.
Original entry on oeis.org
0, 0, 0, 1, 0, 1, 0, 9, 2, 19, 6, 76, 0, 157, 113, 1031, 0, 2506, 0, 13321, 4204, 35246, 3924, 158464, 21623, 430391, 283774, 1854971, 52648, 5553234, 0, 33556537, 18428119, 83562231, 18807137, 436801680, 8328278, 1205614037
Offset: 1
A375729
Irregular triangular array read by rows. T(n,k) is the number of monic irreducible polynomials of degree n in F_2[x] that are k-normal, n>=1, k>=0 .
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 3, 3, 4, 2, 3, 7, 7, 0, 2, 2, 16, 8, 4, 2, 21, 21, 7, 7, 48, 24, 24, 0, 3, 93, 93, 128, 64, 64, 32, 32, 8, 6, 1, 315, 315, 448, 224, 224, 112, 56, 56, 23, 8, 8, 2, 675, 675, 225, 225, 135, 135, 45, 45, 9, 9, 2, 2, 2048, 1024, 512, 256, 128, 64, 32, 16, 3825, 3825, 0, 0, 0, 0, 0, 0, 30, 30
Offset: 1
Triangle begins ...
1, 1;
1;
1, 1;
2, 1;
3, 3;
4, 2, 3;
7, 7, 0, 2, 2;
16, 8, 4, 2;
21, 21, 7, 7;
48, 24, 24, 0, 3;
93, 93;
128, 64, 64, 32, 32, 8, 6, 1;
315, 315;
448, 224, 224, 112, 56, 56, 23, 8, 8, 2;
675, 675, 225, 225, 135, 135, 45, 45, 9, 9, 2, 2;
2048, 1024, 512, 256, 128, 64, 32, 16;
3825, 3825, 0, 0, 0, 0, 0, 0, 30, 30;
...
T(6,1) = 2 because we have 1+X+X^6 and 1+X+X^3+X^4+X^6.
- M. Alizadeh, M Darafsheh, and S. Mehrabi, On the k-normal elements and polynomials over finite fields, Italian Journal of Pure and Applied Mathematics, 39 (2018), 451-464.
- S. Huczynska, G. Mullen, D. Panario, and D. Thomson, Existences and properties of k-normal elements over finite fileds, Finite Fields and Their Applications, 24 (2013), 170-183.
-
knormalcy[lyndonword_, n_] := n - MatrixRank[Table[RotateRight[lyndonword, k], {k, 0, n - 1}], Modulus -> 2]; Map[Table[Count[#, i], {i, 0, Max[#]}] &,Table[orbit[word_] := Table[RotateLeft[word, k], {k, 0, nn - 1}]; c = Select[DeleteDuplicates[Map[Sort, Map[orbit, Tuples[{0, 1}, nn]] /. Table[Tuples[{0, 1}, nn][[i]] -> i - 1, {i, 1, 2^nn}]]], Length[DeleteDuplicates[#]] == nn &][[All, 1]]; Map[knormalcy[#, nn] &, Table[Tuples[{0, 1}, nn][[i]], {i, 1, 2^nn}][[c + 1]]], {nn, 1, 5}]]
Showing 1-7 of 7 results.
Comments