cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A158101 G.f. satisfies: A(x^2) = -4*x + 1/AGM(1, 1 - 8*x/(A(x^2) + 4*x) ).

Original entry on oeis.org

1, 4, 4, -16, -28, 176, 336, -2496, -4956, 40112, 81488, -694720, -1432688, 12647488, 26360896, -238598400, -501256668, 4623092400, 9772018896, -91458048960, -194263943664, 1839634167360, 3923099632704, -37510172125440
Offset: 0

Views

Author

Paul D. Hanna, Mar 13 2009

Keywords

Comments

See A060691 for the expansion of AGM(1,1-8x), where AGM denotes the arithmetic-geometric mean.

Examples

			G.f.: A(x) = 1 + 4*x + 4*x^2 - 16*x^3 - 28*x^4 + 176*x^5 + 336*x^6 - ...
		

Crossrefs

Cf. A002894. - Paul D. Hanna, Feb 04 2010
Cf. A003496.

Programs

  • PARI
    {a(n)=polcoeff(-4*x+x/serreverse(x/agm(1, 1-8*x +O(x^(2*n+1)))),2*n)}
    
  • PARI
    {a(n)=local(G=sum(m=0,n,binomial(2*m,m)^2*x^m)+x*O(x^n));polcoeff((x/serreverse(x*G^2))^(1/2),n)} \\ Paul D. Hanna, Feb 04 2010

Formula

A bisection of A158100.
G.f. satisfies: A(x^2) = -4*x + x/Series_Reversion( x/AGM(1,1-8*x) ).
From Paul D. Hanna, Feb 04 2010: (Start)
G.f. satisfies: A(x) = Sum_{n>=0} C(2n,n)^2*x^n/A(x)^(2n).
G.f.: A(x) = [x/Series_Reversion(x*G(x)^2)]^(1/2) where G(x) = Sum_{n>=0} C(2n,n)^2*x^n = 1/AGM(1, (1-16*x)^(1/2)) = g.f. of A002894.
(End)

A003498 High temperature series for internal energy for spherical model on f.c.c. lattice.

Original entry on oeis.org

1, 12, 48, 252, 1440, 8544, 52416, 330588, 2130240, 13961808, 92784384, 623772288, 4234688640, 28990262016, 199908428544, 1387276513308, 9681052037760, 67895140257840, 478281284627328, 3382695596455344
Offset: 0

Views

Author

Keywords

References

  • G. S. Joyce, Critical properties of the spherical model, in C. Domb and M. S. Green, Phase Transitions and Critical Phenomena, Ac. Press 1972, Vol. 2; see especially pp. 404, 425.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A047712 (Ising model), A003495 (susceptibility), A003496 (cubic lattice), A003497 (b.c.c. lattice).

Extensions

a(16)-a(19) from Joyce added and name clarified by Andrey Zabolotskiy, Oct 18 2023
Showing 1-2 of 2 results.