A003583 a(n) = (n+2)*2^(2*n-1) - (n/2)*binomial(2*n,n).
1, 5, 26, 130, 628, 2954, 13612, 61716, 276200, 1223002, 5367676, 23383100, 101215576, 435712580, 1866667448, 7963424104, 33846062544, 143373104378, 605518549660, 2550438016812, 10716162617336
Offset: 0
Keywords
References
- Pietro Codara, Partitions of a finite partially ordered set, From Combinatorics to Philosophy: The Legacy of G.-C. Rota, Springer, New York (2009), 45-59.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- N. J. Calkin, A curious binomial identity, Discr. Math., 131 (1994), 335-337.
- Pietro Codara, Ottavio D'Antona, Francesco Marigo, Corrado Monti, Making simple proofs simpler, arXiv:1307.1348 [cs.MS], 2013.
- Zachary Hamaker, Eric Marberg, Atoms for signed permutations, arXiv:1802.09805 [math.CO], 2018.
- M. Hirschhorn, Calkin's binomial identity, Discr. Math., 159 (1996), 273-278.
- Jun Wang and Zhizheng Zhang, On extensions of Calkin's binomial identities, Discrete Math., 274 (2004), 331-342.
Crossrefs
Programs
-
Maple
seq((n+2)*2^(2*n-1)-(n/2)*binomial(2*n,n), n=0..50); # Robert Israel, Jan 13 2015
-
Mathematica
Table[(n+2)*2^(2*n-1)-(n/2)*Binomial[2*n,n], {n,0,50}] (* Pietro Codara, Jan 14 2015 *) Table[Sum[Sum[Binomial[n-1,k-1]Binomial[n-1,j-1]Min[k,j],{j,1,n}],{k,1 n}],{n,1,51}] (* Pietro Codara, Jan 14 2015 *)
-
PARI
x='x+O('x^50); Vec((1-2*x)/(1-4*x)^2 - x/(1 - 4*x)^(3/2)) \\ G. C. Greubel, Feb 15 2017
Formula
Main diagonal of correlation matrix of A055248. a(n) = Sum_{k=0..n} ( Sum_{m=k..n} binomial(n, m) )^2. - Paul Barry, Jun 05 2003
Let S2 := (n, t)->add( k^t * (add( binomial(n, j), j=0..k))^2, k=0..n); a(n) = S2(n, 0).
From Robert Israel, Jan 13 2015: (Start)
G.f.: (1-2*x)/(1-4*x)^2 - x/(1 - 4*x)^(3/2).
E.g.f.: (2*x+1)*exp(4*x) - x*exp(2*x)*(I_0(2*x)+I_1(2*x)) where I_0 and I_1 are modified Bessel functions.
a(n) ~ 4^n*(n/2 - sqrt(n)/(2*sqrt(Pi)) + 1 + O(n^(-1/2))).
(End)
Comments