A003633 The sequence 2^(1-n)*a(n) is fixed (up to signs) by Stirling2 transform.
1, -1, 1, 4, -38, -78, 5246, -11680, -2066056, 22308440, 1898577048, -48769559680, -3518093351728, 174500124820560, 11809059761527536, -1021558531563834368, -66133927485154902144, 9433326815405995274624, 578173001867228425792384
Offset: 1
Examples
The sequence that is fixed up to signs by STIRLING2 is 1, -1/2, 1/4, 4/8, -38/16, -78/32, 5246/64, ...
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
Formula
The e.g.f. for the latter sequence satisfies A(x) + A(e^x - 1 ) = 2.
Extensions
More terms from Vladeta Jovovic, Jul 12 2001