cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003634 Smallest positive integer that is n times its digit sum, or 0 if no such number exists.

Original entry on oeis.org

1, 18, 27, 12, 45, 54, 21, 72, 81, 10, 198, 108, 117, 126, 135, 144, 153, 162, 114, 180, 378, 132, 207, 216, 150, 234, 243, 112, 261, 270, 372, 576, 594, 102, 315, 324, 111, 342, 351, 120, 738, 756, 516, 792, 405, 230, 423, 432, 441, 450, 918, 312, 954, 972
Offset: 1

Views

Author

Keywords

Comments

a(n) = 0 for n = 62, 63, 65, ... (A003635). - Robert G. Wilson v, Aug 15 2000

Examples

			a(3) = 27 because no number less than 27 has a digit sum equal to 3 times the number.
		

References

  • J. H. Conway, personal communication.
  • Anthony Gardiner, Mathematical Puzzling, Dover Publications, Inc., Mineola, NY, 1987, Page 11.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Do[k = n; While[Apply[Plus, RealDigits[k][[1]]]*n != k, k += n]; Print[k], {n, 1, 61}]
    With[{ll=Select[Table[{n,n/Total[IntegerDigits[n]]},{n,1000}],IntegerQ[ #[[2]]]&]},Table[Select[ll,#[[2]]==i&,1][[1,1]],{i,60}]] (* Harvey P. Dale, Mar 09 2012 *)
  • Python
    def sd(n): return sum(map(int, str(n)))
    def a(n):
      m = 1
      while m != n*sd(m): m += 1
      return m
    print([a(n) for n in range(1,62)]) # Michael S. Branicky, Jan 18 2021
    
  • Python
    from itertools import count, combinations_with_replacement
    def A003634(n):
        for l in count(1):
            if 9*l*n < 10**(l-1): return 0
            c = 10**l
            for d in combinations_with_replacement(range(10),l):
                if sorted(str(a:=sum(d)*n)) == [str(e) for e in d] and a>0:
                    c = min(c,a)
            if c < 10**l:
                return c # Chai Wah Wu, May 09 2023