A003634 Smallest positive integer that is n times its digit sum, or 0 if no such number exists.
1, 18, 27, 12, 45, 54, 21, 72, 81, 10, 198, 108, 117, 126, 135, 144, 153, 162, 114, 180, 378, 132, 207, 216, 150, 234, 243, 112, 261, 270, 372, 576, 594, 102, 315, 324, 111, 342, 351, 120, 738, 756, 516, 792, 405, 230, 423, 432, 441, 450, 918, 312, 954, 972
Offset: 1
Examples
a(3) = 27 because no number less than 27 has a digit sum equal to 3 times the number.
References
- J. H. Conway, personal communication.
- Anthony Gardiner, Mathematical Puzzling, Dover Publications, Inc., Mineola, NY, 1987, Page 11.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Do[k = n; While[Apply[Plus, RealDigits[k][[1]]]*n != k, k += n]; Print[k], {n, 1, 61}] With[{ll=Select[Table[{n,n/Total[IntegerDigits[n]]},{n,1000}],IntegerQ[ #[[2]]]&]},Table[Select[ll,#[[2]]==i&,1][[1,1]],{i,60}]] (* Harvey P. Dale, Mar 09 2012 *)
-
Python
def sd(n): return sum(map(int, str(n))) def a(n): m = 1 while m != n*sd(m): m += 1 return m print([a(n) for n in range(1,62)]) # Michael S. Branicky, Jan 18 2021
-
Python
from itertools import count, combinations_with_replacement def A003634(n): for l in count(1): if 9*l*n < 10**(l-1): return 0 c = 10**l for d in combinations_with_replacement(range(10),l): if sorted(str(a:=sum(d)*n)) == [str(e) for e in d] and a>0: c = min(c,a) if c < 10**l: return c # Chai Wah Wu, May 09 2023
Comments