cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A003640 Number of genera of imaginary quadratic field with discriminant -k, k = A003657(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 4, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 4, 2, 1, 1, 4, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 1, 2, 2, 2, 1, 1, 4, 4, 2, 2, 1, 2, 2, 2, 1, 4, 2, 4, 1, 4, 2, 1, 4, 4, 1, 2, 2, 2, 2, 2, 2, 2, 1, 4, 1, 4, 2, 2, 2, 2, 1, 2
Offset: 1

Views

Author

Keywords

Comments

The number of genera of a quadratic field is equal to the number of elements x in the class group such that x^2 = e where e is the identity. - Jianing Song, Jul 24 2018

References

  • D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    okQ[n_] := n != 1 && SquareFreeQ[n/2^IntegerExponent[n, 2]] && (Mod[n, 4] == 3 || Mod[n, 16] == 8 || Mod[n, 16] == 4);
    Reap[For[n = 1, n <= 1000, n++, If[okQ[n], Sow[2^(PrimeNu[n]-1)]]]][[2, 1]] (* Jean-François Alcover, Aug 16 2019, after Andrew Howroyd *)
  • PARI
    for(n=1, 1000, if(isfundamental(-n), print1(2^(omega(n) - 1), ", "))) \\ Andrew Howroyd, Jul 24 2018
    
  • PARI
    for(n=1, 1000, if(isfundamental(-n), print1(2^#select(t->t%2==0, quadclassunit(-n).cyc), ", "))) \\ Andrew Howroyd, Jul 24 2018

Formula

a(n) = 2^(t-1) where t = number of distinct prime divisors of A003657(n).
a(n) = 2^(omega(A003657(n)) - 1).

Extensions

Name clarified and offset corrected by Jianing Song, Jul 24 2018

A317990 Number of genera of real quadratic field Q(sqrt(k)), k squarefree > 1.

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 2, 1, 2, 4, 1, 2, 2, 2, 2, 2, 1, 4, 2, 2, 2, 4, 1, 2, 4, 1, 4, 2, 2, 2, 4, 1, 4, 2, 2, 2, 1, 2, 2, 4, 2, 2, 4, 2, 1, 2, 2, 4, 2, 2, 2, 2, 2, 4, 1, 4, 2, 2, 4, 1, 1, 4, 2, 4, 2, 2, 1, 4, 4, 1, 4, 4, 2, 4, 2, 4, 2, 2, 4, 2, 2, 2, 1, 4, 2, 2, 2
Offset: 2

Views

Author

Jianing Song, Oct 03 2018

Keywords

Comments

The number of genera of a quadratic field is equal to the number of elements x in the class group such that x^2 = e where e is the identity.
This is the analog of A003643 for real quadratic fields. Note that for this case "the class group" refers to the narrow class group, or the form class group of indefinite binary forms with discriminant k.

Crossrefs

Programs

  • PARI
    for(n=2, 200, if(issquarefree(n), print1(2^(omega(n*if(n%4>1, 4, 1)) - 1), ", ")))

Formula

a(n) = 2^(omega(A005117(n)-1)) = 2^A317992(n), where omega(k) is the number of distinct prime divisors of k.

Extensions

Offset corrected by Jianing Song, Mar 31 2019

A319662 2-rank of the class group of Q(sqrt(-k)), k squarefree.

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 2, 0, 2, 1, 1, 1, 1, 1, 1, 2, 0, 1, 0, 1, 1, 1, 2, 1, 0, 1, 1, 2, 2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 0, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 0, 3, 1, 0, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 0, 2, 2, 0, 2, 1, 1, 2, 0, 2
Offset: 1

Views

Author

Jianing Song, Sep 25 2018

Keywords

Comments

The p-rank of a finite abelian group G is equal to log_p(#{x belongs to G : x^p = 1}) where p is a prime number. In this case, G is the class group of Q(sqrt(-k)), and #{x belongs to G : x^p = 1} is the number of genera of Q(sqrt(-k)) (cf. A003643).

Crossrefs

Real discriminant case: A317992.

Programs

  • Mathematica
    PrimeNu[#*If[Mod[-#, 4]>1, 4, 1]] - 1& /@ Select[Range[200], SquareFreeQ] (* Jean-François Alcover, Aug 02 2019 *)
  • PARI
    for(n=1, 200, if(issquarefree(n), print1(omega(n*if((-n)%4>1, 4, 1)) - 1, ", ")))
    
  • Sage
    def A319662_list(len):
        L = []
        for n in (1..len):
            if is_squarefree(n):
                if (-n) % 4 > 1: n <<= 2
                L.append(sloane.A001221(n) - 1)
        return L
    print(A319662_list(141)) # Peter Luschny, Oct 15 2018

Formula

a(n) = log_2(A003643(n)) = omega(A005117(n)) - 1, where omega(k) is the number of distinct prime divisors of k.
Showing 1-3 of 3 results.