cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003649 Class number of real quadratic field Q(sqrt f), where f is the n-th squarefree number A005117(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 4, 1, 1, 1, 1, 2, 1, 1, 3, 2, 4, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 2
Offset: 2

Views

Author

Keywords

References

  • Şaban Alaca & Kenneth S. Williams, Introductory Algebraic Number Theory. Cambridge: Cambridge University Press (2004): 322-326, Theorem 12.6.1, Example 12.6.7, Table 8.
  • D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.
  • M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, 1989, p. 432.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000924.

Programs

  • Mathematica
    DeleteCases[Table[Boole[FreeQ[FactorInteger[n], {, k /; k > 2}]] * NumberFieldClassNumber[Sqrt[n]], {n, 100}], 0] (* Alonso del Arte, Aug 26 2014 *)
  • PARI
    for(n=2,1e3,if(issquarefree(n),print1(qfbclassno(n*if(n%4>1, 4, 1))", "))) \\ Charles R Greathouse IV, Feb 19 2013