cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000924 Class number of Q(sqrt(-n)), n squarefree.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 1, 2, 4, 2, 4, 1, 4, 2, 3, 6, 6, 4, 3, 4, 4, 2, 2, 6, 4, 8, 4, 1, 4, 5, 2, 6, 4, 4, 2, 3, 6, 8, 8, 8, 1, 8, 4, 7, 4, 10, 8, 4, 5, 4, 3, 4, 10, 6, 12, 2, 4, 8, 8, 4, 14, 4, 5, 8, 6, 3, 6, 12, 8, 8, 8, 2, 6, 10, 10, 2, 5, 12, 4, 5, 4, 14, 8, 8, 3, 8, 4, 10, 8, 16, 14, 7, 8, 4, 6, 8, 10
Offset: 1

Views

Author

Keywords

Examples

			a(10) = 4, since 14 is the 10th squarefree number and the class number of Q(sqrt(-14)) is 4.
		

References

  • Şaban Alaca & Kenneth S. Williams, Introductory Algebraic Number Theory. Cambridge: Cambridge University Press (2004): 322-325, Theorem 12.6.1, Example 12.6.6, Table 7.
  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, pp. 425-430.
  • D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.
  • R. A. Mollin, Quadratics, CRC Press, 1996, Appendix D, gives a table for n <= 1999, correcting that of Borevich and Shafarevich.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Values of n run through A005117. Corresponding discriminants give A033197.
Cf. also A003649.

Programs

  • Mathematica
    nmax = 100; s = Select[Range[2 * nmax], SquareFreeQ]; a[n_] := NumberFieldClassNumber[Sqrt[-s[[n]]]]; Table[a[n], {n, nmax}] (* Jean-François Alcover, Dec 30 2011 *)
  • PARI
    lista(nn) = for (n=1, nn, if (issquarefree(n), print1(qfbclassno(-n*if((-n)%4>1, 4, 1)), ", "))); \\ Michel Marcus, Jul 08 2015

Extensions

Edited by Dean Hickerson, Mar 17 2003

A003172 Q(sqrt n) is a unique factorization domain (or simple quadratic field).

Original entry on oeis.org

2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 22, 23, 29, 31, 33, 37, 38, 41, 43, 46, 47, 53, 57, 59, 61, 62, 67, 69, 71, 73, 77, 83, 86, 89, 93, 94, 97, 101, 103, 107, 109, 113, 118, 127, 129, 131, 133, 134, 137, 139, 141, 149, 151, 157, 158, 161, 163, 166, 167, 173, 177, 179, 181, 191, 193, 197, 199, 201
Offset: 1

Views

Author

Keywords

Comments

Squarefree numbers n such that A003649 is 1. - T. D. Noe, Apr 02 2008

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, pp. 422-423.
  • E. L. Ince, Cycles of Reduced Ideals in Quadratic Fields. British Association Mathematical Tables, Vol. 4, London, 1934. (See p. 1.)
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. M. Stark, An Introduction to Number Theory. Markham, Chicago, 1970, p. 296.

Crossrefs

Cf. A061574 (includes negative n), A029702-A029705, A218038-A218042.

Programs

  • Mathematica
    Select[Range[2, 199], MoebiusMu[#] != 0 && NumberFieldClassNumber[Sqrt[#]] == 1 &] (* Alonso del Arte, Apr 17 2015 *)
  • PARI
    A007947(n)={my(p); p=factor(n)[, 1]; prod(i=1, length(p), p[i]); }
    { for (n=2, 10^3,
        if ( n!=A007947(n), next() );
        K = bnfinit(x^2 - n);
        if ( K.cyc == [], print1( n, ", ") );
    ); }
    /* Joerg Arndt, Oct 18 2012 */
    
  • PARI
    is(n)=issquarefree(n) && qfbclassno(if(n%4>1, 4, 1)*n)==1 \\ Charles R Greathouse IV, Jan 19 2017

Extensions

The table in Borevich and Shafarevich extends to 497.

A076498 Class number h(p) of real quadratic field Q(sqrt(p)) where p is n-th prime == 1 mod 4.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Nov 11 2002

Keywords

Examples

			h(p) = 1 for p < 229, h(229) = h(257) = h(733) = h(761) = 3, h(401) = 5 and h(577) = 7, ...
		

Crossrefs

A283658 Numbers d > 1 such that the class number of Q(sqrt(d)) is strictly greater than the class number of Q(sqrt(m)) for all m < d.

Original entry on oeis.org

10, 79, 82, 226, 730, 1534, 2305, 3601, 4762, 5626, 11026, 21610, 23410, 27226, 38026, 50626, 116554, 164026, 176401, 189226, 342226, 345745, 411394, 518401, 540226, 613090, 804610, 893026, 1071226, 1199026, 1299601, 1334026, 1550026, 2205226, 2433601, 2873026, 3515626, 3920401
Offset: 1

Views

Author

Emmanuel Vantieghem, Mar 13 2017

Keywords

Comments

Every element d of the sequence is squarefree because, if f is the squarefree part of d, then Q(sqrt(f)) = Q(sqrt(d)). If f would be < d, the class number of Q(sqrt(f)) would not be < the class number of Q(sqrt(d)). Thus, f = d.

Examples

			The sequence starts with 10 because the class number of Q(sqrt(10)) = 2 and all fields Q(sqrt(m)) with m < 10 have class number 1.
The next term is 79 because the class number of Q(sqrt(79)) is 3 and all fields Q(sqrt(m)) with m < 79 have class number 1 or 2.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.

Crossrefs

Programs

  • Mathematica
    A={}; hx = 1; d = 2; While[hx<300, d++; If[SquareFreeQ[d], h = NumberFieldClassNumber[Sqrt[d]]; If[h > hx, AppendTo[A,d]; hx = h]]]; A
  • PARI
    classn(n) = qfbclassno(if(n%4>1, 4, 1)*n);
    isok(d) = {if (issquarefree(d), cld = classn(d); for (k=2, d-1, if (issquarefree(k) && (classn(k) >= cld), return (0))); 1;);} \\ Michel Marcus, Mar 13 2017

Extensions

More terms from Robin Visser, May 25 2024

A283659 Class numbers of the fields Q(sqrt(A283658(n))).

Original entry on oeis.org

2, 3, 4, 8, 12, 14, 16, 20, 22, 28, 44, 48, 52, 58, 74, 96, 116, 130, 153, 154, 176, 180, 200, 230, 240, 256, 288, 296, 312, 316, 357, 394, 412, 452, 504, 540, 574, 575, 584, 616, 692, 924, 994, 1061, 1068, 1080, 1245, 1248, 1302, 1336
Offset: 1

Views

Author

Emmanuel Vantieghem, Mar 13 2017

Keywords

Examples

			The sequence starts with 2 because the first number in A283658 is 10 and the class number of Q(sqrt(10)) equals 2.
The fifth term is 12 because A283658(5) = 226 and the class number of Q(sqrt(226)) is 12.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.

Crossrefs

Programs

  • Mathematica
    H = {}; hx = 1; d = 2; While[hx < 5, d++;
    If[SquareFreeQ[d], h = NumberFieldClassNumber[Sqrt[d]];
      If[h > hx, AppendTo[H, h]; hx = h]]]; H

Extensions

a(30)-a(50) from Robin Visser, May 25 2024

A246457 Given m the n-th cubefree number, A004709(n); a(n) is the class number of the pure cubic field Q(m^(1/3)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 3, 3, 2, 1, 1, 3, 3, 3, 3, 1, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 6, 1, 3, 12, 1, 1, 1, 2, 3, 3, 3, 3, 1, 1, 6, 6, 1, 3, 6, 3, 6, 18, 6, 6, 3, 1, 9, 1, 3, 3, 1, 6, 3, 3, 6, 1, 2, 3, 3, 9, 1, 2, 3, 9, 3, 3, 3, 3, 3, 3, 1, 1, 2, 3, 3, 6, 6, 1, 3, 9, 3, 4, 3
Offset: 1

Views

Author

Alonso del Arte, Aug 26 2014

Keywords

Comments

The smallest m for which the ring of integers of Q(m^(1/3)) is not a unique factorization domain is m = 7, for which the corresponding field has class number 3.
The table in Alaca & Williams includes 63 but excludes 18 and other cubefree but not squarefree numbers. It is clear that cubefree perfect squares are omitted from their table because on p. 328 they assert that Q((k^2)^(1/3)) = Q(k^(1/3)).

Examples

			a(8) = 1 because the eighth cubefree number is 9 and Q(9^(1/3)) has class number 1.
a(9) = 1 because the ninth cubefree number is 10 and Q(10^(1/3)) has class number 1.
a(10) = 2 because the tenth cubefree number is 11 and Q(11^(1/3)) has class number 2. - _Robin Visser_, Aug 31 2025
		

References

  • Şaban Alaca & Kenneth S. Williams, Introductory Algebraic Number Theory. Cambridge: Cambridge University Press (2004): 325-329, Examples 12.6.8 & 12.6.9, Table 9.

Crossrefs

Programs

Extensions

Prepended a(1) = 1, corrected term a(43), and edited and more terms from Robin Visser, Aug 31 2025
Showing 1-6 of 6 results.