cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003652 Class number of real quadratic field with discriminant A003658(n), n >= 2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 4, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 4, 1, 1, 1, 1, 1, 2
Offset: 2

Views

Author

Keywords

References

  • D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.
  • H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993, pp. 515-519
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    NumberFieldClassNumber[Sqrt[#]] &/@ Select[Range[500], FundamentalDiscriminantQ] (* G. C. Greubel, Mar 01 2019 *)
  • PARI
    for(n=1, 500, if(isfundamental(n) && !issquare(n), print1(quadclassunit(n).no, ", "))) \\ G. C. Greubel, Mar 01 2019
    
  • Sage
    [QuadraticField(n, 'a').class_number() for n in (1..500) if is_fundamental_discriminant(n) and not is_square(n)] # G. C. Greubel, Mar 01 2019

Extensions

Offset corrected by Jianing Song, Mar 31 2019