cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A003853 Order of simple Chevalley group D_7(q), q = prime power.

Original entry on oeis.org

1691555775522928280469504000, 11470635634813395742481912276441576767488000, 5722569627753465177061732369386833143098255605760000000, 967724409898859060146424426078796386718750000000000000000000000, 39242041156758982253792290541798244252619818128923898602839750047956992000000
Offset: 1

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Mathematica
    d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}] / GCD[4, q^n-1]; Table[d[q, 7], {q, Select[Range[10], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)

Formula

a(n) = d(A000961(n+1),7) where d(q,n) is defined in A003837. - Sean A. Irvine, Sep 17 2015

Extensions

More terms from Sean A. Irvine, Sep 17 2015

A003841 Order of universal Chevalley group D_2(q), q = prime power.

Original entry on oeis.org

36, 576, 3600, 14400, 112896, 254016, 518400, 1742400, 4769856, 16646400, 23970816, 46785600, 147476736, 243360000, 386358336, 593409600, 885657600, 1071645696, 2561979456, 4744454400, 6314527296
Offset: 1

Views

Author

Keywords

Comments

Numbers given so far divided by 36 (except the first) are all members of A014796. - Ralf Stephan, Feb 07 2004
Is a(n) = A007531( A000961(n)+1 )^2? - Ralf Stephan, Feb 08 2004 [Answer: Yes. This is equivalent to the first formula below. - Amiram Eldar, Jun 24 2025]

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Mathematica
    d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}]; Table[d[q, 2], {q, Select[Range[50], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)

Formula

a(n) = D(A000961(n+1),2) where D(q,n) is defined in A003830. - Sean A. Irvine, Sep 17 2015

A003843 Order of universal Chevalley group D_4(q), q = prime power.

Original entry on oeis.org

174182400, 19808719257600, 67010895544320000, 35646156000000000000, 450219964711195607040000, 19031213036231093492121600, 516728027484579221176320000, 142998501741091915820267520000
Offset: 1

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Mathematica
    d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}]; Table[d[q, 4], {q, Select[Range[12], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)

Formula

a(n) = D(A000961(n+1),4) where D(q,n) is defined in A003830. - Sean A. Irvine, Sep 17 2015

A003844 Order of universal Chevalley group D_5(q), q = prime power.

Original entry on oeis.org

23499295948800, 2579025599882610278400, 1154606796534757164318720000, 27230655539587500000000000000000, 104772288945650279285144527564308480000, 42863636354909175368011800612065142374400
Offset: 1

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Mathematica
    d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}]; Table[d[q, 5], {q, Select[Range[12], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)

Formula

a(n) = D(A000961(n+1),5) where D(q,n) is defined in A003830. - Sean A. Irvine, Sep 17 2015

A003845 Order of universal Chevalley group D_6(q), q = prime power.

Original entry on oeis.org

50027557148216524800, 27051378802435080953011843891200, 5081732431326820541485324550799360000000, 12987912192212013697265625000000000000000000000
Offset: 1

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Mathematica
    d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}]; Table[d[q, 6], {q, Select[Range[12], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)

Formula

a(n) = D(A000961(n+1),6) where D(q,n) is defined in A003830. - Sean A. Irvine, Sep 17 2015
Showing 1-5 of 5 results.