A003972 Moebius transform of A003961; a(n) = phi(A003961(n)), where A003961 shifts the prime factorization of n one step towards the larger primes.
1, 2, 4, 6, 6, 8, 10, 18, 20, 12, 12, 24, 16, 20, 24, 54, 18, 40, 22, 36, 40, 24, 28, 72, 42, 32, 100, 60, 30, 48, 36, 162, 48, 36, 60, 120, 40, 44, 64, 108, 42, 80, 46, 72, 120, 56, 52, 216, 110, 84, 72, 96, 58, 200, 72, 180, 88, 60, 60, 144, 66, 72, 200, 486, 96, 96, 70
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000 (first 1000 terms from Vincenzo Librandi)
Programs
-
Mathematica
b[1] = 1; b[p_?PrimeQ] := b[p] = Prime[ PrimePi[p] + 1]; b[n_] := b[n] = Times @@ (b[First[#]]^Last[#] &) /@ FactorInteger[n]; a[n_] := Sum[ MoebiusMu[n/d]*b[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Jul 18 2013 *)
-
PARI
A003972(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); eulerphi(factorback(f)); }; \\ Antti Karttunen, Aug 20 2020
-
Python
from math import prod from sympy import nextprime, factorint def A003972(n): return prod((q:=nextprime(p))**(e-1)*(q-1) for p, e in factorint(n).items()) # Chai Wah Wu, Jul 18 2022
Formula
Multiplicative with a(p^e) = (q-1)q^(e-1) where q = nextPrime(p). - David W. Wilson, Sep 01 2001
a(n) = A000010(A003961(n)) = A037225(A108228(n)) = A037225(A048673(n)-1). - Antti Karttunen, Aug 20 2020
Sum_{k=1..n} a(k) ~ c * n^2, where c = (3/Pi^2) * Product_{p prime} (p^2-p)/(p^2 - nextPrime(p)) = 1.2547593344... . - Amiram Eldar, Nov 18 2022
Extensions
More terms from David W. Wilson, Aug 29 2001
Secondary name added by Antti Karttunen, Aug 20 2020