A003999 Sums of distinct nonzero 4th powers.
1, 16, 17, 81, 82, 97, 98, 256, 257, 272, 273, 337, 338, 353, 354, 625, 626, 641, 642, 706, 707, 722, 723, 881, 882, 897, 898, 962, 963, 978, 979, 1296, 1297, 1312, 1313, 1377, 1378, 1393, 1394, 1552, 1553, 1568, 1569, 1633, 1634, 1649, 1650, 1921, 1922
Offset: 1
References
- The Penguin Dictionary of Curious and Interesting Numbers, David Wells, entry 5134240.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
Maple
(1+x)*(1+x^16)*(1+x^81)*(1+x^256)*(1+x^625)*(1+x^1296)*(1+x^2401)*(1+x^4096)*(1+x^6561)*(1+x^10000)
-
Mathematica
max = 2000; f[x_] := Product[1 + x^(k^4), {k, 1, 10}]; Exponent[#, x]& /@ List @@ Normal[Series[f[x], {x, 0, max}]] // Rest (* Jean-François Alcover, Nov 09 2012, after Charles R Greathouse IV *)
-
PARI
upto(lim)={ lim\=1; my(v=List(),P=prod(n=1,lim^(1/4),1+x^(n^4),1+O(x^(lim+1)))); for(n=1,lim,if(polcoeff(P,n),listput(v,n))); Vec(v) }; \\ Charles R Greathouse IV, Sep 02 2011
Formula
For n > 4244664, a(n) = n + 889576. - Charles R Greathouse IV, Sep 02 2011
Comments