cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004005 Coefficients of elliptic function sn.

Original entry on oeis.org

1, 135, 5478, 165826, 4494351, 116294673, 2949965020, 74197080276, 1859539731885, 46535238000235, 1163848723925346, 29100851707716150, 727566807977891803, 18189614152200873621, 454744658216502193656
Offset: 2

Views

Author

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(5.2.24).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Leading terms in rows of triangle in A060628.

Programs

  • Maple
    A004005:=-(-1-89*z+69*z**2+405*z**3)/(-1+25*z)/(9*z-1)**2/(z-1)**3; # Conjectured by Simon Plouffe in his 1992 dissertation.
    A004005 := proc(n) A060628(n,2) ; end proc: seq(A004005(n),n=2..40) ; # R. J. Mathar, Jan 30 2011
  • Mathematica
    maxn = 16; se = Series[JacobiSN[u, m], {u, 0, 2*maxn+1}]; cc = Partition[CoefficientList[se, u], 2][[All, 2]]; cc2 = (CoefficientList[#, m] & /@ cc)*Table[(-1)^n*(2*n+1)!, {n, 0, maxn}]; Table[cc2[[n+1, n-1]], {n, 2, maxn}](* Jean-François Alcover, Feb 17 2012 *)

Formula

a(n) = (5^(2*n+1) - (8*n-4)*3^(2*n+1) + 32*n^2 - 32*n -17)/256. - Vaclav Kotesovec after Fransen, Jul 30 2013

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003