cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004012 Theta series of hexagonal close-packing.

Original entry on oeis.org

1, 0, 0, 12, 0, 0, 6, 0, 2, 18, 0, 12, 6, 0, 0, 12, 0, 12, 6, 6, 12, 24, 6, 0, 0, 12, 0, 12, 0, 24, 12, 12, 2, 12, 6, 24, 6, 12, 0, 24, 0, 12, 0, 6, 24, 12, 12, 24, 6, 12, 0, 24, 0, 24, 18, 12, 12, 24, 0, 12, 0, 12, 0, 36, 0, 24, 12, 18, 12, 24, 12, 48, 2, 0, 0, 36, 0, 0, 24, 12, 12
Offset: 0

Views

Author

Keywords

Comments

The theta series of even layers is a(q^3) * theta_3(q^8) and of odd layers is c(q^3) * theta_2(q^8). - Michael Somos, Aug 15 2006
The Cartesian coordinates of the points in the packing are given by HCP(i, j, k) =
(i + (j + m)/2, (3*j + m)/sqrt(12), sqrt(2/3)*k) where, m=mod(k, 2) and i, j, k are integers. - Michael Somos, Feb 04 2019
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 12*x^3 + 6*x^6 + 2*x^8 + 18*x^9 + 12*x^11 + 6*x^12 + 12*x^15 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 114.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^3]^3 + 9 x^3 QPochhammer[ x^27]^3) / QPochhammer[ x^9] EllipticTheta[ 3, 0, x^8] + 3 x QPochhammer[ x^9]^3 / QPochhammer[ x^3]  EllipticTheta[ 2, 0, x^8], {x, 0, n}]; (* Michael Somos, Jul 19 2014 *)
    a[ n_] := SeriesCoefficient[ 6 x^3 QPochhammer[ x^32]^2 / ( QPochhammer[ x^3] QPochhammer[ x^16]) + 2 EllipticTheta[ 3, 0, x^3]  EllipticTheta[ 3, 0, x^8] EllipticTheta[ 3, 0, x^9] - EllipticTheta[ 4, 0, x^3]   EllipticTheta[ 4, 0, x^8] EllipticTheta[ 4, 0, x^9], {x, 0, n}]; (* Michael Somos, Jul 19 2014 *)
  • PARI
    {a(n) = my(A, A0, A1); if( n<0, 0, A = x * O(x^n); A1 = x^3 * eta(x^9 + A)^3 * eta(x^32 + A)^2 / (eta(x^3 + A) * eta(x^16 + A)); A0 = sum(k=1, sqrtint(n\3), 2 * x^(3*k^2), 1 + A) * sum(k=1, sqrtint(n\8), 2 * x^(8*k^2), 1 + A) * sum(k=1, sqrtint(n\9), 2 * x^(9*k^2), 1 + A); polcoeff( 2*A0 + 6*A1 - subst(A0, x, -x), n))}; /* Michael Somos, Aug 03 2006 */

Formula

{t3(8z/3) - t2(8z/3)/2} * {t3(z)t3(3z) + t2(z)t2(3z)} + (1/2)*t2(8z/3) * {t3(z/3)t3(z) + t2(z/3)t2(z)}, where t3=theta_3, t2=theta_2.
Expansion of a(x^3) * phi(x^8) + 2*x^2 * c(x^3) * psi(x^16) in powers of x where a(), c() are cubic AGM theta functions and phi(), psi() are Ramanujan theta functions.
a(n) is the number of integer solutions [i, j, k] to n = 2*i^2 + (j^2 + j*k + k^2) / 3 where j, k == mod(i, 2) (mod 3). - Michael Somos, Jul 19 2014
G.f.: Sum_{i, j, k in Z} x^(8*i^2 + 3*(j^2 + j*k + k^2)) * (1 + x^(3 + 8*i + 3*j + 3*k)). - Michael Somos, Jul 19 2014