A004020 Theta series of square lattice with respect to edge.
2, 4, 2, 4, 4, 0, 6, 4, 0, 4, 4, 4, 2, 4, 0, 4, 8, 0, 4, 0, 2, 8, 4, 0, 4, 4, 0, 4, 4, 4, 2, 8, 0, 0, 4, 0, 8, 4, 4, 4, 0, 0, 6, 4, 0, 4, 8, 0, 4, 4, 0, 8, 0, 0, 0, 8, 6, 4, 4, 0, 4, 4, 0, 0, 4, 4, 8, 4, 0, 4, 4, 0, 6, 4, 0, 0, 8, 0, 4, 4, 0, 12, 0, 4, 4, 0, 0, 4, 4, 0, 2, 8, 4, 4, 8, 0, 0, 4, 0, 4, 4, 4, 4, 0
Offset: 0
Keywords
Examples
G.f. = 2 + 4*x + 2*x^2 + 4*x^3 + 4*x^4 + 6*x^6 + 4*x^7 + 4*x^9 + 4*x^10 + ... G.f. = 2*q + 4*q^5 + 2*q^9 + 4*q^13 + 4*q^17 + 6*q^25 + 4*q^29 + 4*q^37 + ...
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 106.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 2, 0, x] / x^(1/4), {x, 0, n}]; (* Michael Somos, Feb 22 2015 *) s = 2*QPochhammer[q^2]^4/QPochhammer[q]^2+O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 09 2015 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); 2 * polcoeff( eta(x^2 A)^4 / eta(x + A)^2, n))};
-
PARI
{a(n) = 2 * if( n<1, n==0, polcoeff( sum(k=0, (sqrtint(8*n + 1) - 1)\2, x^(k*(k + 1)/2), x*O(x^n))^2, n))};
Formula
G.f.: 2 * (Sum_{k>0} x^((k^2 - k)/2))^2 = (Sum_{k in Z} x^(k^2 + k)) * (Sum_{k in Z} x^(k^2)).
Expansion of q^(-1/2) * c(q) / 2 in powers of q^2 where c(q) is the third function in the quadratic Gauss AGM. - Michael Somos, Feb 10 2006
Expansion of 2 * phi(x) * psi(x^2) in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Feb 10 2006
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi (A000796). - Amiram Eldar, Oct 15 2022
Comments