cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004100 Number of labeled nonseparable bipartite graphs on n nodes.

Original entry on oeis.org

0, 1, 0, 3, 10, 355, 6986, 297619, 15077658, 1120452771, 111765799882, 15350524923547, 2875055248515242, 738416821509929731, 260316039943139322858, 126430202628042630866787, 84814075550928212558332858, 78847417416749666369637926851
Offset: 1

Views

Author

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 406.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    b[n_] := Log[Sum[Exp[2^k*x + O[x]^n]*x^k/k!, {k, 0, n}]/2];
    seq[n_] := CoefficientList[-Log[2] + Log[x/InverseSeries[x*D[b[n], x]]], x]*Table[(2k)!!, {k, 0, n-2}];
    seq[19] (* Jean-François Alcover, Sep 04 2019, after Andrew Howroyd *)
  • PARI
    \\ here b(n) is A001832 as e.g.f.
    b(n)={log(sum(k=0, n, exp(2^k*x + O(x*x^n))*x^k/k!))/2}
    seq(n)={Vec(serlaplace(log(x/serreverse(x*deriv(b(n))))), -n)} \\ Andrew Howroyd, Sep 26 2018

Extensions

a(16) onwards added by N. J. A. Sloane, Oct 19 2006 from the Robinson reference