A004101 Number of partitions of n of the form a_1*b_1^2 + a_2*b_2^2 + ...; number of semisimple rings with p^n elements for any prime p.
1, 1, 2, 3, 6, 8, 13, 18, 29, 40, 58, 79, 115, 154, 213, 284, 391, 514, 690, 900, 1197, 1549, 2025, 2600, 3377, 4306, 5523, 7000, 8922, 11235, 14196, 17777, 22336, 27825, 34720, 43037, 53446, 65942, 81423, 100033, 122991, 150481, 184149, 224449, 273614, 332291
Offset: 0
Examples
4 = 4*1^2 = 1*2^2 = 3*1^2 + 1*1^2 = 2*1^2 + 2*1^2 = 2*1^2 + 1*1^2 + 1*1^2 = 1*1^2 + 1*1^2 + 1*1^2 + 1*1^2.
References
- J. Knopfmacher, Abstract Analytic Number Theory. North-Holland, Amsterdam, 1975, p. 293.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
- Gert Almkvist, Asymptotics of various partitions, arXiv:math/0612446 [math.NT], 2006 (section 6).
- I. G. Connell, A number theory problem concerning finite groups and rings, Canad. Math. Bull, 7 (1964), 23-34.
- I. G. Connell, Letter to N. J. A. Sloane, no date
- N. J. A. Sloane, Transforms
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d* mul(1+iquo(i[2], 2), i=ifactors(d)[2]), d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..60); # Alois P. Heinz, Nov 26 2013 sqd:=proc(n) local t1,d; t1:=0; for d in divisors(n) do if (n mod d^2) = 0 then t1:=t1+1; fi; od; t1; end; # A046951 t2:=mul( 1/(1-x^n)^sqd(n),n=1..65); series(t2,x,60); seriestolist(%); # N. J. A. Sloane, Jun 24 2015
-
Mathematica
max = 45; A046951 = Table[Sum[Floor[n/k^2], {k, n}], {n, 0, max}] // Differences; f = Product[1/(1-x^n)^A046951[[n]], {n, 1, max}]; CoefficientList[Series[f, {x, 0, max}], x] (* Jean-François Alcover, Feb 11 2014 *) nmax = 50; CoefficientList[Series[Product[1/(1 - x^(j*k^2)), {k, 1, Floor[Sqrt[nmax]] + 1}, {j, 1, Floor[nmax/k^2] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 03 2017 *)
-
PARI
N=66; x='x+O('x^N); gf=1/prod(j=1,N, eta(x^(j^2))); Vec(gf) /* Joerg Arndt, May 03 2008 */
Formula
EULER transform of A046951.
a(n) ~ exp(Pi^2 * sqrt(n) / 3 + sqrt(3/(2*Pi)) * Zeta(1/2) * Zeta(3/2) * n^(1/4) - 9 * Zeta(1/2)^2 * Zeta(3/2)^2 / (16*Pi^3)) * Pi^(3/4) / (sqrt(2) * 3^(1/4) * n^(5/8)) [Almkvist, 2006]. - Vaclav Kotesovec, Jan 03 2017
Extensions
More terms, formula and better description from Christian G. Bower, Nov 15 1999
Name clarified by Paul Laubie, Mar 05 2024
Comments