cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004101 Number of partitions of n of the form a_1*b_1^2 + a_2*b_2^2 + ...; number of semisimple rings with p^n elements for any prime p.

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 13, 18, 29, 40, 58, 79, 115, 154, 213, 284, 391, 514, 690, 900, 1197, 1549, 2025, 2600, 3377, 4306, 5523, 7000, 8922, 11235, 14196, 17777, 22336, 27825, 34720, 43037, 53446, 65942, 81423, 100033, 122991, 150481, 184149, 224449, 273614, 332291
Offset: 0

Views

Author

Keywords

Comments

The number of semisimple rings with p^n elements does not depend on the prime number p. - Paul Laubie, Mar 05 2024

Examples

			4 = 4*1^2 = 1*2^2 = 3*1^2 + 1*1^2 = 2*1^2 + 2*1^2 = 2*1^2 + 1*1^2 + 1*1^2 = 1*1^2 + 1*1^2 + 1*1^2 + 1*1^2.
		

References

  • J. Knopfmacher, Abstract Analytic Number Theory. North-Holland, Amsterdam, 1975, p. 293.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember;
          `if`(n=0, 1, add(add(d* mul(1+iquo(i[2], 2),
          i=ifactors(d)[2]), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Nov 26 2013
    sqd:=proc(n) local t1,d; t1:=0; for d in divisors(n) do if (n mod d^2) = 0 then t1:=t1+1; fi; od; t1; end; # A046951
    t2:=mul( 1/(1-x^n)^sqd(n),n=1..65); series(t2,x,60); seriestolist(%); # N. J. A. Sloane, Jun 24 2015
  • Mathematica
    max = 45; A046951 = Table[Sum[Floor[n/k^2], {k, n}], {n, 0, max}] // Differences; f = Product[1/(1-x^n)^A046951[[n]], {n, 1, max}]; CoefficientList[Series[f, {x, 0, max}], x] (* Jean-François Alcover, Feb 11 2014 *)
    nmax = 50; CoefficientList[Series[Product[1/(1 - x^(j*k^2)), {k, 1, Floor[Sqrt[nmax]] + 1}, {j, 1, Floor[nmax/k^2] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 03 2017 *)
  • PARI
    N=66; x='x+O('x^N); gf=1/prod(j=1,N, eta(x^(j^2))); Vec(gf) /* Joerg Arndt, May 03 2008 */

Formula

EULER transform of A046951.
a(n) ~ exp(Pi^2 * sqrt(n) / 3 + sqrt(3/(2*Pi)) * Zeta(1/2) * Zeta(3/2) * n^(1/4) - 9 * Zeta(1/2)^2 * Zeta(3/2)^2 / (16*Pi^3)) * Pi^(3/4) / (sqrt(2) * 3^(1/4) * n^(5/8)) [Almkvist, 2006]. - Vaclav Kotesovec, Jan 03 2017

Extensions

More terms, formula and better description from Christian G. Bower, Nov 15 1999
Name clarified by Paul Laubie, Mar 05 2024