cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004114 Number of trees with n nodes and 2-colored internal (non-leaf) nodes.

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 33, 98, 305, 1002, 3424, 12016, 43230, 158516, 590621, 2230450, 8521967, 32889238, 128064009, 502590642, 1986357307, 7900377892, 31602819524, 127076645038, 513419837168, 2083414420394, 8488377206876, 34712566540014, 142443837953632
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    max = 28; etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n ]; b]; bb = etr[A004113]; A004113[n_] := If[n <= 1, n, 2*bb[n - 1]]; b[x_] := Sum[A004113[n] x^n, {n, 1, max}]; f[x_] := Sum[a[n] x^n, {n, 0, max}]; a[0] = a[1] = a[2] = 1; coes = CoefficientList[ Series[f[x] - (1 + b[x] - x*b[x] - b[x]^2/2 + b[x^2]/2), {x, 0, max}], x]; Table[a[n], {n, 0, max}] /. Solve[Thread[coes == 0]][[1]] (* Jean-François Alcover, Jan 29 2013, after Alois P. Heinz *)

Formula

G.f.: 1+B(x)-x*B(x)-B(x)^2/2+B(x^2)/2 where B(x) is g.f. of A004113. - Christian G. Bower, Dec 15 1999
a(n) ~ c * d^n / n^(5/2), where d = 4.49415643203339504537343052... (same as for A004113), c = 0.31497820931312537077... . - Vaclav Kotesovec, Sep 12 2014

Extensions

More terms, and new description from Christian G. Bower, Dec 15 1999