A004218 a(n) = log_10(n) rounded up.
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3
Offset: 1
Keywords
Examples
From _M. F. Hasler_, Dec 07 2018: (Start) log_10(1) = 0, therefore a(1) = 0. log_10(2) = 0.301..., therefore a(2) = 1. log_10(9) = 0.954..., therefore a(9) = 1. log_10(10) = 1, therefore a(10) = 1. log_10(11) = 1.04..., therefore a(11) = 2. log_10(99) = 1.9956..., therefore a(99) = 2. log_10(100) = 2, therefore a(100) = 2. log_10(101) = 2.004..., therefore a(101) = 3. (End)
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a004218 n = if n == 1 then 0 else 1 + a004216 (n - 1)
-
Maple
A004218 := proc(n) ceil(log[10](n)) ; end proc: seq(A004218(n),n=1..120) ; # R. J. Mathar, May 16 2023
-
Mathematica
Array[Ceiling[Log10[#]] &, 100] (* Amiram Eldar, Dec 08 2018 *)
-
PARI
A004218(n)=logint(n-(n>1),10)+1 \\ M. F. Hasler, Dec 07 2018
Formula
a(1) = 0, a(n) = 1 + A004216(n-1) for n > 1. - Reinhard Zumkeller, Dec 22 2012
a(n) = A055642(n-1) for all n > 1. a(n+1) is the number of decimal digits of n if 0 is considered to have 0 digits. - M. F. Hasler, Dec 07 2018
Comments