A004233 a(n) = ceiling(log(n)).
0, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- G. Whyman, N. Ohtori, E. Shulzinger, and Ed. Bormashenko, Revisiting the Benford law: When the Benford-like distribution of leading digits in sets of numerical data is expectable?, Physica A: Statistical Mechanics and its Applications, 461 (2016), 595-601.
- Index entries for sequences related to Benford's law
Programs
-
Haskell
a004233 = ceiling . log . fromIntegral -- Reinhard Zumkeller, Mar 17 2015
-
Mathematica
Ceiling[Log[Range[100]]] (* Paolo Xausa, Jun 28 2024 *)
-
PARI
a(n)=ceil(log(n)) \\ Charles R Greathouse IV, Apr 29 2015
Comments