A213350 8-quantum transitions in systems of N >= 8 spin 1/2 particles, in columns by combination indices.
1, 18, 180, 10, 1320, 220, 7920, 2640, 66, 41184, 22880, 1716, 192192, 160160, 24024, 364, 823680, 960960, 240240, 10920, 3294720, 5125120, 1921920, 174720, 1820, 12446720, 24893440, 13069056, 1980160, 61880, 44808192, 112020480
Offset: 8
Examples
Starting rows of the triangle: N | k = 0, 1, ..., floor((N-8)/2) ---+------------------------------ 8 | 1 9 | 18 10 | 180 10 11 | 1320 220 12 | 7920 2640 66
References
- See A213343
Links
- Stanislav Sykora, Table of n, a(n) for n = 8..2216
- Stanislav Sykora, T(8;N,k) with rows N = 8..100 and columns k = 0..floor((N-8)/2)
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
Crossrefs
Programs
-
Mathematica
With[{q = 8}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, q, q + 10}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* Michael De Vlieger, Nov 20 2019 *)
-
PARI
See A213343; set thisq = 8
Formula
Set q = 8 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k)
Comments