A213349 7-quantum transitions in systems of N >= 7 spin 1/2 particles, in columns by combination indices.
1, 16, 144, 9, 960, 180, 5280, 1980, 55, 25344, 15840, 1320, 109824, 102960, 17160, 286, 439296, 576576, 160160, 8008, 1647360, 2882880, 1201200, 120120, 1365, 5857280, 13178880, 7687680, 1281280, 43680, 19914752, 56010240
Offset: 7
Examples
Starting rows of the triangle: N | k = 0, 1, ..., floor((N-7)/2) 7 | 1 8 | 16 9 | 144 9 10 | 960 180 11 | 5280 1980 55
References
- See A213343
Links
- Stanislav Sykora, Table of n, a(n) for n = 7..2262
- Stanislav Sykora, T(7;N,k) with rows N = 7..100 and columns k = 0..floor((N-7)/2)
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
Crossrefs
Programs
-
Mathematica
With[{q = 7}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, q, q + 10}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* Michael De Vlieger, Nov 20 2019 *)
-
PARI
See A213343; set thisq = 7
Formula
Set q = 7 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k).
Comments