cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A213352 10-quantum transitions in systems of N >= 10 spin 1/2 particles, in columns by combination indices.

Original entry on oeis.org

1, 22, 264, 12, 2288, 312, 16016, 4368, 91, 96096, 43680, 2730, 512512, 349440, 43680, 560, 2489344, 2376192, 495040, 19040, 11202048, 14257152, 4455360, 342720, 3060, 47297536, 77395968, 33860736, 4341120, 116280, 189190144, 386979840, 225738240, 43411200
Offset: 10

Views

Author

Stanislav Sykora, Jun 13 2012

Keywords

Comments

For a general discussion, please see A213343.
This a(n) is for decuple-quantum transitions (q = 10).
It lists the flattened triangle T(10;N,k) with rows N = 10,11,... and columns k = 0..floor((N-10)/2).

Examples

			Starting rows of the triangle:
   N | k = 0, 1, ..., floor((N-10)/2)
  ---+-------------------------------
  10 |     1
  11 |    22
  12 |   264   12
  13 |  2288  312
  14 | 16016 4368 91
		

References

Crossrefs

Cf. A051288 (q=0), A213343 to A213351 (q=1 to 9).
Cf. A172242 (first column), A004316 (row sums).

Programs

  • Mathematica
    With[{q = 10}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, q, q + 10}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* Michael De Vlieger, Nov 20 2019 *)
  • PARI
    See A213343; set thisq = 10

Formula

Set q = 10 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k).

A213350 8-quantum transitions in systems of N >= 8 spin 1/2 particles, in columns by combination indices.

Original entry on oeis.org

1, 18, 180, 10, 1320, 220, 7920, 2640, 66, 41184, 22880, 1716, 192192, 160160, 24024, 364, 823680, 960960, 240240, 10920, 3294720, 5125120, 1921920, 174720, 1820, 12446720, 24893440, 13069056, 1980160, 61880, 44808192, 112020480
Offset: 8

Views

Author

Stanislav Sykora, Jun 13 2012

Keywords

Comments

For a general discussion, please see A213343.
This a(n) is for octuple-quantum transitions (q = 8).
It lists the flattened triangle T(8;N,k) with rows N = 8,9,... and columns k = 0..floor((N-8)/2).

Examples

			Starting rows of the triangle:
   N | k = 0, 1, ..., floor((N-8)/2)
  ---+------------------------------
   8 |    1
   9 |   18
  10 |  180   10
  11 | 1320  220
  12 | 7920 2640 66
		

References

Crossrefs

Cf. A051288 (q=0), A213343 to A213349 (q=1 to 7), A213351 (q=9), A213352 (q= 10).
Cf. A140325 (first row, with offset 8), A004314 (row sums).

Programs

  • Mathematica
    With[{q = 8}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, q, q + 10}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* Michael De Vlieger, Nov 20 2019 *)
  • PARI
    See A213343; set thisq = 8

Formula

Set q = 8 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k)
Showing 1-2 of 2 results.