A213352 10-quantum transitions in systems of N >= 10 spin 1/2 particles, in columns by combination indices.
1, 22, 264, 12, 2288, 312, 16016, 4368, 91, 96096, 43680, 2730, 512512, 349440, 43680, 560, 2489344, 2376192, 495040, 19040, 11202048, 14257152, 4455360, 342720, 3060, 47297536, 77395968, 33860736, 4341120, 116280, 189190144, 386979840, 225738240, 43411200
Offset: 10
Examples
Starting rows of the triangle: N | k = 0, 1, ..., floor((N-10)/2) ---+------------------------------- 10 | 1 11 | 22 12 | 264 12 13 | 2288 312 14 | 16016 4368 91
References
- See A213343.
Links
- Stanislav Sykora, Table of n, a(n) for n = 10..2125
- Stanislav Sykora, T(10;N,k) with rows N=10..100 and columns k=0..floor((N-10)/2)
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
Crossrefs
Programs
-
Mathematica
With[{q = 10}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, q, q + 10}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* Michael De Vlieger, Nov 20 2019 *)
-
PARI
See A213343; set thisq = 10
Formula
Set q = 10 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k).
Comments