A213343
1-quantum transitions in systems of N spin 1/2 particles, in columns by combination indices. Triangle read by rows, T(n, k) for n >= 1 and 0 <= k <= floor((n-1)/2).
Original entry on oeis.org
1, 4, 12, 3, 32, 24, 80, 120, 10, 192, 480, 120, 448, 1680, 840, 35, 1024, 5376, 4480, 560, 2304, 16128, 20160, 5040, 126, 5120, 46080, 80640, 33600, 2520, 11264, 126720, 295680, 184800, 27720, 462, 24576, 337920, 1013760, 887040, 221760, 11088
Offset: 1
T(1;3,1) = 3 because the only transitions compatible with q=1,k=1 are (001,110),(010,101),(100,011).
Starting rows of the triangle T(1;N,k):
N | k = 0, 1, ..., floor((N-1)/2)
1 | 1
2 | 4
3 | 12 3
4 | 32 24
5 | 80 120 10
- R. R. Ernst, G. Bodenhausen, A. Wokaun, Principles of nuclear magnetic resonance in one and two dimensions, Clarendon Press, 1987, Chapters 2-6.
- M. H. Levitt, Spin Dynamics, J.Wiley & Sons, 2nd Ed.2007, Part3 (Section 6).
- J. A. Pople, W. G. Schneider, H. J. Bernstein, High-resolution Nuclear Magnetic Resonance, McGraw-Hill, 1959, Chapter 6.
- Stanislav Sykora, Table of n, a(n) for n = 1..2550
- Stanislav Sykora, T(1;N,k) with rows N=1,..,100 and columns k=0,..,floor((N-1)/2)
- S. Sykora, p-Quantum Transitions and a Combinatorial Identity, Stan's Library, II, Aug 2007.
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
-
egf := exp(2*x*y) * BesselI(1, 2*x):
ser := series(egf, x, 32): cx := n -> coeff(ser, x, n):
Trow := n -> n!*seq(coeff(cx(n), y, n - 2*k - 1), k = 0..floor((n-1)/2)):
seq(print([n], Trow(n)), n = 1..12); # Peter Luschny, May 12 2021
-
With[{q = 1}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, 11}, {k, 0, Floor[(n - 1)/2]}]] // Flatten (* Michael De Vlieger, Nov 18 2019 *)
-
TNQK(N, q, k)={binomial(N, k)*binomial(N-k, q+k)*2^((N-k)-(q+k))}
TQ(Nmax, q)={vector(Nmax-q+1, n, vector(1+(n-1)\2, k, TNQK(n+q-1, q, k-1)))}
{ concat(TQ(13, 1)) } \\ simplified by Andrew Howroyd, May 12 2021
A213344
2-quantum transitions in systems of N>=2 spin 1/2 particles, in columns by combination indices.
Original entry on oeis.org
1, 6, 24, 4, 80, 40, 240, 240, 15, 672, 1120, 210, 1792, 4480, 1680, 56, 4608, 16128, 10080, 1008, 11520, 53760, 50400, 10080, 210, 28160, 168960, 221760, 73920, 4620, 67584, 506880, 887040, 443520, 55440, 792
Offset: 2
For N=4, there are 4 second-quantum transitions with combination index 1: (0001,1110),(0010,1101),(0100,1011),(1000,0111).
Starting rows of the triangle:
N | k = 0, 1, ..., floor((N-2)/2)
2 | 1
3 | 6
4 | 24 4
5 | 80 40
6 | 240 240 15
- Stanislav Sykora, Table of n, a(n) for n = 2..2501
- Stanislav Sykora, T(2;N,k) with rows N=2,..,100 and columns k=0,..,floor((N-2)/2)
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
-
With[{q = 2}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, 12}, {k, 0, Floor[(n - 2)/2]}]] // Flatten (* Michael De Vlieger, Nov 18 2019 *)
-
See A213343; set thisq = 2.
A213345
3-quantum transitions in systems of N>=3 spin 1/2 particles, in columns by combination indices.
Original entry on oeis.org
1, 8, 40, 5, 160, 60, 560, 420, 21, 1792, 2240, 336, 5376, 10080, 3024, 84, 15360, 40320, 20160, 1680, 42240, 147840, 110880, 18480, 330, 112640, 506880, 532224, 147840, 7920, 292864, 1647360, 2306304, 960960, 102960
Offset: 3
Some of the 40 triple-quantum transitions for N = 5 and combination index 0: (00000,01011),(10010,11111),...
Starting rows of the triangle T(3;N,k):
N | k = 0, 1, ..., floor((N-3)/2)
3 | 1
4 | 8
5 | 40 5
6 | 160 60
7 | 560 420 21
- Stanislav Sykora, Table of n, a(n) for n = 3..2452
- Stanislav Sykora, T(3;N,k) with rows N=3,..,100 and columns k=0,..,floor((N-3)/2)
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
-
With[{q = 3}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, 13}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* Michael De Vlieger, Nov 18 2019 *)
-
See A213343; set thisq = 3.
A213346
4-quantum transitions in systems of N>=4 spin 1/2 particles, in columns by combination indices.
Original entry on oeis.org
1, 10, 60, 6, 280, 84, 1120, 672, 28, 4032, 4032, 504, 13440, 20160, 5040, 120, 42240, 88704, 36960, 2640, 126720, 354816, 221760, 31680, 495, 366080, 1317888, 1153152, 274560, 12870, 1025024, 4612608, 5381376, 1921920, 180180, 2002
Offset: 4
Starting rows of the triangle:
N | k = 0, 1, ..., floor((N-4)/2)
4 | 1
5 | 10
6 | 60 6
7 | 280 84
8 | 1120 672 28
- Stanislav Sykora, Table of n, a(n) for n = 4..2404
- Stanislav Sykora, T(4;N,k) with rows N=4,..,100 and columns k=0,..,floor((N-4)/2)
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
-
With[{q = 4}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, 14}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* Michael De Vlieger, Nov 18 2019 *)
-
See A213343; set thisq = 4
A213347
5-quantum transitions in systems of N>=5 spin 1/2 particles, in columns by combination indices.
Original entry on oeis.org
1, 12, 84, 7, 448, 112, 2016, 1008, 36, 8064, 6720, 720, 29568, 36960, 7920, 165, 101376, 177408, 63360, 3960, 329472, 768768, 411840, 51480, 715, 1025024, 3075072, 2306304, 480480, 20020, 3075072, 11531520, 11531520
Offset: 5
Starting rows of the triangle:
N | k = 0, 1, ..., floor((N-5)/2)
5 | 1
6 | 12
7 | 84 7
8 | 448 112
9 | 2016 1008 36
- Stanislav Sykora, Table of n, a(n) for n = 5..2356
- Stanislav Sykora, T(5;N,k) with rows N=5,..,100 and columns k=0,..,floor((N-5)/2)
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
-
With[{q = 5}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, 15}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* Michael De Vlieger, Nov 18 2019 *)
-
See A213343; set thisq = 5
A213348
6-quantum transitions in systems of N >= 6 spin 1/2 particles, in columns by combination indices.
Original entry on oeis.org
1, 14, 112, 8, 672, 144, 3360, 1440, 45, 14784, 10560, 990, 59136, 63360, 11880, 220, 219648, 329472, 102960, 5720, 768768, 1537536, 720720, 80080, 1001, 2562560, 6589440, 4324320, 800800, 30030, 8200192, 26357760, 23063040
Offset: 6
Starting rows of the triangle:
N | k = 0, 1, ..., floor((N-6)/2)
6 | 1
7 | 14
8 | 112 8
9 | 672 144
10 | 3360 1440 45
-
With[{q = 6}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, q, q + 10}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* Michael De Vlieger, Nov 20 2019 *)
-
See A213343; set thisq = 6
A213349
7-quantum transitions in systems of N >= 7 spin 1/2 particles, in columns by combination indices.
Original entry on oeis.org
1, 16, 144, 9, 960, 180, 5280, 1980, 55, 25344, 15840, 1320, 109824, 102960, 17160, 286, 439296, 576576, 160160, 8008, 1647360, 2882880, 1201200, 120120, 1365, 5857280, 13178880, 7687680, 1281280, 43680, 19914752, 56010240
Offset: 7
Starting rows of the triangle:
N | k = 0, 1, ..., floor((N-7)/2)
7 | 1
8 | 16
9 | 144 9
10 | 960 180
11 | 5280 1980 55
-
With[{q = 7}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, q, q + 10}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* Michael De Vlieger, Nov 20 2019 *)
-
See A213343; set thisq = 7
A213350
8-quantum transitions in systems of N >= 8 spin 1/2 particles, in columns by combination indices.
Original entry on oeis.org
1, 18, 180, 10, 1320, 220, 7920, 2640, 66, 41184, 22880, 1716, 192192, 160160, 24024, 364, 823680, 960960, 240240, 10920, 3294720, 5125120, 1921920, 174720, 1820, 12446720, 24893440, 13069056, 1980160, 61880, 44808192, 112020480
Offset: 8
Starting rows of the triangle:
N | k = 0, 1, ..., floor((N-8)/2)
---+------------------------------
8 | 1
9 | 18
10 | 180 10
11 | 1320 220
12 | 7920 2640 66
-
With[{q = 8}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, q, q + 10}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* Michael De Vlieger, Nov 20 2019 *)
-
See A213343; set thisq = 8
A213351
9-quantum transitions in systems of N >= 9 spin 1/2 particles, in columns by combination indices.
Original entry on oeis.org
1, 20, 220, 11, 1760, 264, 11440, 3432, 78, 64064, 32032, 2184, 320320, 240240, 32760, 455, 1464320, 1537536, 349440, 14560, 6223360, 8712704, 2970240, 247520, 2380, 24893440, 44808192, 21385728, 2970240, 85680, 94595072, 212838912, 135442944, 28217280
Offset: 9
Starting rows of the triangle:
N | k = 0, 1, ..., floor((N-9)/2)
---+------------------------------
9 | 1
10 | 20
11 | 220 11
12 | 1760 264
13 | 11440 3432 78
-
With[{q = 9}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, q, q + 10}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* Michael De Vlieger, Nov 20 2019 *)
-
\\ See A213343; set thisq = 9
Showing 1-9 of 9 results.
Comments