cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A213343 1-quantum transitions in systems of N spin 1/2 particles, in columns by combination indices. Triangle read by rows, T(n, k) for n >= 1 and 0 <= k <= floor((n-1)/2).

Original entry on oeis.org

1, 4, 12, 3, 32, 24, 80, 120, 10, 192, 480, 120, 448, 1680, 840, 35, 1024, 5376, 4480, 560, 2304, 16128, 20160, 5040, 126, 5120, 46080, 80640, 33600, 2520, 11264, 126720, 295680, 184800, 27720, 462, 24576, 337920, 1013760, 887040, 221760, 11088
Offset: 1

Views

Author

Stanislav Sykora, Jun 09 2012

Keywords

Comments

[General discussion]: Consider the 2^N numbers with N-digit binary expansion. Let a pair (v,w), here called a "transition", be such that there are exactly k+q digits which are '0' in v and '1' in w, and exactly k digits which are '1' in v and '0' in w. Then T(q;N,k) is the number of all such pairs.
For given N and q, the rows of the triangle T(q;N,k) sum up to Sum[k]T(q;N,k) = C(2N,N-q) which is the total number of q-quantum transitions or, equivalently, the number of pairs in which the sum of binary digits of w exceeds that of v by exactly q (see Crossrefs).
The terminology stems from the mapping of the i-th digit onto quantum states of the i-th particle (-1/2 for digit '0', +1/2 for digit '1'), the numbers onto quantum states of the system, and the pairs onto quantum transitions between states. In magnetic resonance (NMR) the most intense transitions are the single-quantum ones (q=1) with k=0, called "main transitions", while those with k>0, called "combination transitions", tend to be weaker. Zero-, double- and, in general, q-quantum transitions are detectable by special techniques.
[Specific case]: This sequence is for single-quantum transitions (q = 1). It lists the flattened triangle T(1;N,k), with rows N = 1,2,... and columns k = 0..floor((N-1)/2).

Examples

			T(1;3,1) = 3 because the only transitions compatible with q=1,k=1 are (001,110),(010,101),(100,011).
Starting rows of the triangle T(1;N,k):
  N | k = 0, 1, ..., floor((N-1)/2)
  1 |  1
  2 |  4
  3 | 12   3
  4 | 32  24
  5 | 80 120 10
		

References

  • R. R. Ernst, G. Bodenhausen, A. Wokaun, Principles of nuclear magnetic resonance in one and two dimensions, Clarendon Press, 1987, Chapters 2-6.
  • M. H. Levitt, Spin Dynamics, J.Wiley & Sons, 2nd Ed.2007, Part3 (Section 6).
  • J. A. Pople, W. G. Schneider, H. J. Bernstein, High-resolution Nuclear Magnetic Resonance, McGraw-Hill, 1959, Chapter 6.

Crossrefs

Cf. A051288 (q=0), A213344..A213352 (q=2..10).
Cf. A001787 (first column), A001791 (row sums).

Programs

  • Maple
    egf := exp(2*x*y) * BesselI(1, 2*x):
    ser := series(egf, x, 32): cx := n -> coeff(ser, x, n):
    Trow := n -> n!*seq(coeff(cx(n), y, n - 2*k - 1), k = 0..floor((n-1)/2)):
    seq(print([n], Trow(n)), n = 1..12); # Peter Luschny, May 12 2021
  • Mathematica
    With[{q = 1}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, 11}, {k, 0, Floor[(n - 1)/2]}]] // Flatten (* Michael De Vlieger, Nov 18 2019 *)
  • PARI
    TNQK(N, q, k)={binomial(N, k)*binomial(N-k, q+k)*2^((N-k)-(q+k))}
    TQ(Nmax, q)={vector(Nmax-q+1, n, vector(1+(n-1)\2, k, TNQK(n+q-1, q, k-1)))}
    { concat(TQ(13, 1)) } \\ simplified by Andrew Howroyd, May 12 2021

Formula

Set q = 1 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k).
T(n, k) = n! * [y^(n-2*k-1)] [x^n] exp(2*x*y)*BesselI(1, 2*x). - Peter Luschny, May 12 2021

A213345 3-quantum transitions in systems of N>=3 spin 1/2 particles, in columns by combination indices.

Original entry on oeis.org

1, 8, 40, 5, 160, 60, 560, 420, 21, 1792, 2240, 336, 5376, 10080, 3024, 84, 15360, 40320, 20160, 1680, 42240, 147840, 110880, 18480, 330, 112640, 506880, 532224, 147840, 7920, 292864, 1647360, 2306304, 960960, 102960
Offset: 3

Views

Author

Stanislav Sykora, Jun 12 2012

Keywords

Comments

For a general discussion, please see A213343.
This a(n) is for triple-quantum transitions (q = 3).
It lists the flattened triangle T(3;N,k) with rows N = 3,5,... and columns k = 0..floor((N-3)/2).

Examples

			Some of the 40 triple-quantum transitions for N = 5 and combination index 0: (00000,01011),(10010,11111),...
Starting rows of the triangle T(3;N,k):
  N | k = 0, 1, ..., floor((N-3)/2)
  3 |   1
  4 |   8
  5 |  40   5
  6 | 160  60
  7 | 560 420 21
		

References

Crossrefs

Cf. A051288 (q=0), A213343 (q=1), A213344 (q=2), A213346 to A213352 (q=4..10).
Cf. A001789 (first column), A002696 (row sums).

Programs

  • Mathematica
    With[{q = 3}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, 13}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* Michael De Vlieger, Nov 18 2019 *)
  • PARI
    See A213343; set thisq = 3.

Formula

Set q = 3 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k).
Showing 1-2 of 2 results.