cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004437 Numbers that are not the sum of 4 distinct squares.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 36, 37, 40, 43, 44, 47, 48, 52, 55, 58, 60, 64, 67, 68, 72, 73, 76, 80, 82, 88, 92, 96, 97, 100, 103, 108, 112
Offset: 1

Views

Author

Keywords

Comments

It follows from the formula that there are infinitely many integers that cannot be partitioned into a sum of four distinct squares of nonnegative integers and infinitely many that can. Furthermore, the largest odd number that has no such partition is 103, and thereafter the terms satisfy the thirty-first order recurrence relation a(n) = 4a(n-31). - Ant King, Nov 02 2010

Crossrefs

Cf. A001944 (complement).

Programs

  • Mathematica
    data = Reduce[ w^2 + x^2 + y^2 + z^2 == # && 0 <= w < x < y < z < #, {w, x, y, z}, Integers] & /@ Range[112]; DeleteCases[ Table[If[Head[data[[k]]] === Symbol, k, 0], {k, 1, Length[data]}], 0] (* Ant King, Nov 02 2010 *)

Formula

Let k>=0. Then the only integers that cannot be partitioned into a sum of four distinct squares of nonnegative integers are 4^k * N3, where N3 = (N1 union N2), and N1 and N2 are defined by N1 = {1,3,5,7,9,11,13,15,17,19,23,25,27,31,33,37,43,47,55,67,73,97,103} and N2 = {2,6,10,18,22,34,58,82}, respectively. - Ant King, Nov 02 2010