A004520 Generalized nim sum n + n in base 10.
0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 20, 22, 24, 26, 28, 20, 22, 24, 26, 28, 40, 42, 44, 46, 48, 40, 42, 44, 46, 48, 60, 62, 64, 66, 68, 60, 62, 64, 66, 68, 80, 82, 84, 86, 88, 80, 82, 84, 86, 88, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 20, 22, 24, 26, 28, 20, 22, 24, 26, 28, 40, 42, 44, 46, 48, 40, 42
Offset: 0
References
- E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982.
- J. H. Conway, On Numbers and Games. Academic Press, NY, 1976.
Links
- David Applegate, Marc LeBrun and N. J. A. Sloane, Carryless Arithmetic (I): The Mod 10 Version.
- R. Hinze, Concrete stream calculus: An extended study, J. Funct. Progr. 20 (5-6) (2010) 463-535, doi, Section 4.4.
- Index entries for sequences related to carryless arithmetic
- Index entries for sequences related to Nim-sums
Crossrefs
When sorted and duplicates removed, gives A014263. - N. J. A. Sloane, Aug 03 2010
Programs
-
Mathematica
carrylessAdd[m_, n_, b_] := Block[{lm = IntegerLength[m, b], ln = IntegerLength[n, b]}, mx = Max[lm, ln]; idm = IntegerDigits[m, b, mx]; idn = IntegerDigits[n, b, mx]; FromDigits[ Mod[ idm + idn, b], b]]; Table[ carrylessAdd[n, n, 10], {n, 0, 76}] (* Robert G. Wilson v, Aug 23 2010 *)
-
PARI
a(n) = fromdigits(digits(n)%5)<<1; \\ Kevin Ryde, Dec 10 2022
-
Python
def A004520(n): return int(''.join(str(2*int(d) % 10) for d in str(n))) # Chai Wah Wu, Jun 29 2020
Formula
Generalized nim sum m + n in base q: write m and n in base q and add mod q with no carries, e.g. 5 + 8 in base 3 = "21" + "22" = "10" = 1.
Extensions
More terms from Robert G. Wilson v, Aug 23 2010
Comments