cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A059729 Carryless squares n X n base 10.

Original entry on oeis.org

0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 100, 121, 144, 169, 186, 105, 126, 149, 164, 181, 400, 441, 484, 429, 466, 405, 446, 489, 424, 461, 900, 961, 924, 989, 946, 905, 966, 929, 984, 941, 600, 681, 664, 649, 626, 605, 686, 669, 644, 621, 500, 501, 504, 509, 506, 505
Offset: 0

Views

Author

Henry Bottomley, Feb 20 2001

Keywords

Examples

			a(87) is carryless sum of (6)400, (5)60, (5)60 and (4)9, i.e., 400+20+9 = 429.
		

Crossrefs

See A087019 (lunar squares) for another version.

Programs

  • PARI
    a(n) = fromdigits(Vec(Pol(digits(n))^2)%10) \\ Ruud H.G. van Tol, Dec 07 2022
  • Python
    def A059729(n):
        s = [int(d) for d in str(n)]
        l = len(s)
        t = [0]*(2*l-1)
        for i in range(l):
            for j in range(l):
                t[i+j] = (t[i+j] + s[i]*s[j]) % 10
        return int("".join(str(d) for d in t)) # Chai Wah Wu, Jun 29 2020
    

A169887 Primes in carryless arithmetic mod 10.

Original entry on oeis.org

21, 23, 25, 27, 29, 41, 43, 45, 47, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, 65, 67, 69, 81, 83, 85, 87, 89, 201, 209, 227, 229, 241, 243, 261, 263, 287, 289, 403, 407, 421, 427, 443, 449, 463, 469, 481, 487, 551, 553, 557, 559, 603, 607, 623, 629, 641, 647, 661, 667, 683, 689, 801, 809, 821, 823, 847, 849, 867, 869, 881, 883
Offset: 1

Views

Author

Keywords

Comments

Define the units in carryless arithmetic mod 10 to be the numbers 1, 3, 7 and 9 (these divide any number). A prime is a number N, not a unit, whose only factorizations are of the form N = u * M, where u is a unit.
There are two types: e-type primes (A163396) and f-type (A169984).

Examples

			Examples of nonprimes: 2 = 2*51, 4 = 2*2, 10 = 52*85, 11 = 57*83, 101 = 13*17, 102 = 58 * 254 = 502 * 801, 103 = 53 * 251 = 507 * 809, 107 = 53 * 259 = 507 * 801, 108 = 58 * 256 = 502 * 809, 111 = 227 * 553.
		

Crossrefs

Cf. A004520, A059729, A168294, A168541, A169885, A169886, A169884, A169903 (primitive primes).
Cf. A169962.

A059692 Table of carryless products i * j, i>=0, j>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 4, 3, 0, 0, 4, 6, 6, 4, 0, 0, 5, 8, 9, 8, 5, 0, 0, 6, 0, 2, 2, 0, 6, 0, 0, 7, 2, 5, 6, 5, 2, 7, 0, 0, 8, 4, 8, 0, 0, 8, 4, 8, 0, 0, 9, 6, 1, 4, 5, 4, 1, 6, 9, 0, 0, 10, 8, 4, 8, 0, 0, 8, 4, 8, 10, 0, 0, 11, 20, 7, 2, 5, 6, 5, 2, 7, 20, 11, 0
Offset: 0

Views

Author

Henry Bottomley, Feb 19 2001

Keywords

Examples

			Table begins:
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0,  0,  0,  0,  0,  0 ...
  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ...
  0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 20, 22, 24, 26, 28, 20 ...
  0, 3, 6, 9, 2, 5, 8, 1, 4, 7, 30, 33, 36, 39, 32, 35 ...
  0, 4, 8, 2, 6, 0, 4, 8, 2, 6, 40, 44, 48, 42, 46, 40 ...
  ...
T(12, 97) = 954 since we have 12 X 97 = carryless sum of 900, (180 mod 100=)80, 70 and (14 mod 10=)4 = 954.
		

Crossrefs

Cf. A001477 for carryless 1 X n, A004520 for carryless 2 X 10 base 10, A055120 for carryless 9 X n, A008592 for carryless 10 X n.
Cf. A048720 (binary), A325820 (ternary).

Programs

  • Mathematica
    len[num_]:=Length[IntegerDigits[num]]; digit[num_,d_]:=Part[IntegerDigits[num],d]; T[i_, j_] := FromDigits[Reverse[CoefficientList[PolynomialMod[Sum[digit[i,c]*x^(len[i]-c), {c, len[i]}]*Sum[digit[j,r]*x^(len[j]-r), {r, len[j]}], 10], x]]]; Flatten[Table[T[i - j, j], {i, 0, 12}, {j, 0, i}]] (* Stefano Spezia, Sep 26 2022 *)
  • PARI
    T(n,k) = fromdigits(lift(Vec( Mod(Pol(digits(n)),10) * Pol(digits(k))))); \\ Kevin Ryde, Sep 27 2022

Extensions

Minor edits by N. J. A. Sloane, Aug 24 2010

A168294 Carryless product n times n+1.

Original entry on oeis.org

0, 2, 6, 2, 0, 0, 2, 6, 2, 90, 110, 132, 156, 172, 190, 110, 132, 156, 172, 280, 420, 462, 406, 442, 480, 420, 462, 406, 442, 670, 930, 992, 956, 912, 970, 930, 992, 956, 912, 260, 640, 622, 606, 682, 660, 640, 622, 606, 682, 50, 550, 552, 556, 552, 550, 550, 552, 556, 552
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Python
    def A168294(n):
        s, t = [int(d) for d in str(n)], [int(d) for d in str(n+1)]
        l, m = len(s), len(t)
        u = [0]*(l+m-1)
        for i in range(l):
            for j in range(m):
                u[i+j] = (u[i+j] + s[i]*t[j]) % 10
        return int("".join(str(d) for d in u)) # Chai Wah Wu, Jun 30 2020

A169885 Cubes (n * n * n) in carryless arithmetic mod 10.

Original entry on oeis.org

0, 1, 8, 7, 4, 5, 6, 3, 2, 9, 1000, 1331, 1628, 1977, 1284, 1555, 1886, 1173, 1422, 1739, 8000, 8261, 8448, 8647, 8864, 8005, 8266, 8443, 8642, 8869, 7000, 7791, 7468, 7117, 7844, 7555, 7246, 7913, 7662, 7399, 4000, 4821, 4688, 4487, 4224, 4005, 4826, 4683
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    a(n) = fromdigits(Vec(Pol(digits(n))^3)%10); \\ Seiichi Manyama, Mar 09 2023

A169886 Fourth powers (n * n * n * n) in carryless arithmetic mod 10.

Original entry on oeis.org

0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 10000, 14641, 18426, 12481, 16666, 10005, 14646, 18421, 12486, 16661, 60000, 62481, 64646, 66661, 68426, 60005, 62486, 64641, 66666, 68421, 10000, 18421, 16666, 14641, 12486, 10005, 18426, 16661, 14646, 12481, 60000, 66661, 62486
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    a(n) = fromdigits(Vec(Pol(digits(n))^4)%10); \\ Seiichi Manyama, Mar 09 2023

A169884 Numbers consisting of either all even digits or just 5's and 0's.

Original entry on oeis.org

0, 2, 4, 5, 6, 8, 20, 22, 24, 26, 28, 40, 42, 44, 46, 48, 50, 55, 60, 62, 64, 66, 68, 80, 82, 84, 86, 88, 200, 202, 204, 206, 208, 220, 222, 224, 226, 228, 240, 242, 244, 246, 248, 260, 262, 264, 266, 268, 280, 282, 284, 286, 288, 400, 402, 404, 406
Offset: 1

Views

Author

Keywords

Comments

These are all the divisors of zero in carryless arithmetic mod 10. E.g. 5 * 44 = 0.

Crossrefs

Programs

  • Mathematica
    With[{upto=410},Select[Union[Join[Select[Range[upto],And@@EvenQ[ IntegerDigits[#]]&], FromDigits/@Tuples[{5,0},Ceiling[Log[ 10,upto]]]]],#<=upto&]] (* Harvey P. Dale, Aug 05 2011 *)
    elect[Range[0,500],AllTrue[IntegerDigits[#],EvenQ]||SubsetQ[{0,5},IntegerDigits[#]]&] (* Harvey P. Dale, Aug 22 2025 *)

A168541 Numbers consisting of either 2's and 0's or 5's and 0's.

Original entry on oeis.org

2, 5, 20, 50, 200, 202, 220, 500, 505, 550, 2000, 2002, 2020, 2022, 2200, 2202, 2220, 5000, 5005, 5050, 5055, 5500, 5505, 5550, 20000, 20002, 20020, 20022, 20200, 20202, 20220, 20222, 22000, 22002, 22020, 22022, 22200, 22202, 22220, 50000, 50005
Offset: 1

Views

Author

Keywords

Comments

A subset of the divisors of zero in carryless arithmetic mod 10, e.g., 5 * 44 = 0.

Crossrefs

Programs

  • Mathematica
    lst = {2, 5}; k = 1; While[k < 10^5, id = Union@ IntegerDigits@k; len = Length@ id; If[ len == 2 && id == {0, 2} || id == {0, 5}, AppendTo[lst, k]]; k++ ]; lst (* Robert G. Wilson v, Jul 12 2010 *)
    Join[{2,5},Sort[Flatten[Table[Select[FromDigits/@Tuples[{k,0},6],DigitCount[ #,10,0]>0 && DigitCount[#,10,k]>0&],{k,{2,5}}]]]] (* Harvey P. Dale, Jul 03 2020 *)

Extensions

More terms from Robert G. Wilson v, Jul 12 2010

A169894 Table of carryless sums i + j, i>=0, j>=0, read by antidiagonals.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 11, 11, 1, 1, 1, 1, 1, 1, 1, 1, 11, 11, 12, 12, 12, 2, 2, 2, 2, 2, 2, 2, 12, 12, 12
Offset: 0

Views

Author

Keywords

Examples

			Table begins:
  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ...
  1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 11, 12, 13, 14, 15, 16 ...
  2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 12, 13, 14, 15, 16, 17 ...
  3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 13, 14, 15, 16, 17, 18 ...
  4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 14, 15, 16, 17, 18, 19 ...
  ...
		

Crossrefs

Cf. A004520 (diagonal), A059692 (carryless products).

Programs

  • Maple
    A169894 := proc(a,b)
        local adigs,bdigs,cdigs ;
        adigs := convert(a,base,10) ;
        bdigs := convert(b,base,10) ;
        len := max(nops(adigs),nops(bdigs)) ;
        adigs := [op(adigs),seq(0,d=1..len-nops(adigs))] ;
        bdigs := [op(bdigs),seq(0,d=1..len-nops(bdigs))] ;
        cdigs := [] ;
        for d from 1 to len do
            cdigs := [op(cdigs),A010879(op(d,adigs)+op(d,bdigs))] ;
        end do:
        add(op(d,cdigs)*10^(d-1),d=1..len) ;
    end proc: # R. J. Mathar, Jul 12 2013
  • Mathematica
    len[num_]:=Length[IntegerDigits[num]]; digit[num_, d_]:=Part[IntegerDigits[num], d]; T[i_, j_] := FromDigits[Reverse[CoefficientList[PolynomialMod[Sum[digit[i, c]*x^(len[i]-c), {c, len[i]}]+Sum[digit[j, r]*x^(len[j]-r), {r, len[j]}], 10], x]]]; Table[T[i - j, j], {i, 0, 12}, {j, 0, i}] (* Stefano Spezia, Dec 20 2023 *)

A059632 Carryless product 11 X n base 10.

Original entry on oeis.org

0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132, 143, 154, 165, 176, 187, 198, 109, 220, 231, 242, 253, 264, 275, 286, 297, 208, 219, 330, 341, 352, 363, 374, 385, 396, 307, 318, 329, 440, 451, 462, 473, 484, 495, 406, 417, 428, 439, 550, 561, 572, 583
Offset: 0

Views

Author

Henry Bottomley, Feb 19 2001

Keywords

Comments

a(n) <= 11*n; a(m) = 11*m iff m is a term of A039691. - Reinhard Zumkeller, Jul 05 2014

Examples

			a(19)=109 since we have 11 X 19 = carryless sum of 100, 90, 10 and 9 =109
		

Crossrefs

Cf. A001477 for carryless 1 X n, A004520 for carryless 2 X 10 base 10, A055120 for carryless 9 X n, A008592 for carryless 10 X n.
Cf. A048724 carryless 3Xn in base 2, A242399 carryless 4Xn in base 3.
Cf. A008593.

Programs

  • Haskell
    a059632 n = foldl (\v d -> 10 * v + d) 0 $
                      map (flip mod 10) $ zipWith (+) ([0] ++ ds) (ds ++ [0])
                where ds = map (read . return) $ show n
    -- Reinhard Zumkeller, Jul 05 2014
Showing 1-10 of 20 results. Next