cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A169887 Primes in carryless arithmetic mod 10.

Original entry on oeis.org

21, 23, 25, 27, 29, 41, 43, 45, 47, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, 65, 67, 69, 81, 83, 85, 87, 89, 201, 209, 227, 229, 241, 243, 261, 263, 287, 289, 403, 407, 421, 427, 443, 449, 463, 469, 481, 487, 551, 553, 557, 559, 603, 607, 623, 629, 641, 647, 661, 667, 683, 689, 801, 809, 821, 823, 847, 849, 867, 869, 881, 883
Offset: 1

Views

Author

Keywords

Comments

Define the units in carryless arithmetic mod 10 to be the numbers 1, 3, 7 and 9 (these divide any number). A prime is a number N, not a unit, whose only factorizations are of the form N = u * M, where u is a unit.
There are two types: e-type primes (A163396) and f-type (A169984).

Examples

			Examples of nonprimes: 2 = 2*51, 4 = 2*2, 10 = 52*85, 11 = 57*83, 101 = 13*17, 102 = 58 * 254 = 502 * 801, 103 = 53 * 251 = 507 * 809, 107 = 53 * 259 = 507 * 801, 108 = 58 * 256 = 502 * 809, 111 = 227 * 553.
		

Crossrefs

Cf. A004520, A059729, A168294, A168541, A169885, A169886, A169884, A169903 (primitive primes).
Cf. A169962.

A169886 Fourth powers (n * n * n * n) in carryless arithmetic mod 10.

Original entry on oeis.org

0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 10000, 14641, 18426, 12481, 16666, 10005, 14646, 18421, 12486, 16661, 60000, 62481, 64646, 66661, 68426, 60005, 62486, 64641, 66666, 68421, 10000, 18421, 16666, 14641, 12486, 10005, 18426, 16661, 14646, 12481, 60000, 66661, 62486
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    a(n) = fromdigits(Vec(Pol(digits(n))^4)%10); \\ Seiichi Manyama, Mar 09 2023

A169884 Numbers consisting of either all even digits or just 5's and 0's.

Original entry on oeis.org

0, 2, 4, 5, 6, 8, 20, 22, 24, 26, 28, 40, 42, 44, 46, 48, 50, 55, 60, 62, 64, 66, 68, 80, 82, 84, 86, 88, 200, 202, 204, 206, 208, 220, 222, 224, 226, 228, 240, 242, 244, 246, 248, 260, 262, 264, 266, 268, 280, 282, 284, 286, 288, 400, 402, 404, 406
Offset: 1

Views

Author

Keywords

Comments

These are all the divisors of zero in carryless arithmetic mod 10. E.g. 5 * 44 = 0.

Crossrefs

Programs

  • Mathematica
    With[{upto=410},Select[Union[Join[Select[Range[upto],And@@EvenQ[ IntegerDigits[#]]&], FromDigits/@Tuples[{5,0},Ceiling[Log[ 10,upto]]]]],#<=upto&]] (* Harvey P. Dale, Aug 05 2011 *)
    elect[Range[0,500],AllTrue[IntegerDigits[#],EvenQ]||SubsetQ[{0,5},IntegerDigits[#]]&] (* Harvey P. Dale, Aug 22 2025 *)

A361351 Carryless n-th powers of n base 10.

Original entry on oeis.org

1, 1, 4, 7, 6, 5, 6, 3, 6, 9, 10000000000, 115502205511, 1440046600466, 19225142754633, 166668888866666, 1555555555555555, 16000880008800066, 194006440028800877, 1422046880284402844, 11116222228888849999, 600000000000000000000, 2600042000840006800021
Offset: 0

Views

Author

Seiichi Manyama, Mar 09 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = fromdigits(Vec(Pol(digits(n))^n)%10);

A169903 Primitive primes in carryless arithmetic mod 10.

Original entry on oeis.org

21, 23, 25, 27, 29, 51, 56, 201, 209, 227, 229, 241, 243, 261, 263, 287, 289, 551, 2023, 2027, 2043, 2047, 2061, 2069, 2081, 2089, 2207, 2209, 2221, 2223, 2263, 2267, 2281, 2287, 2401, 2407, 2421, 2423, 2441, 2449, 2483, 2489, 2603, 2609
Offset: 1

Views

Author

Keywords

Comments

Define the units in carryless arithmetic mod 10 to be the numbers 1, 3, 7 and 9 (these divide any number). A prime is a number N, not a unit, whose only factorizations are of the form N = u * M, where u is a unit.
A prime is primitive if it is not the carryless product of a smaller prime and a unit.
A subsequence of A169887.

Crossrefs

A361390 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) is carryless n^k base 10.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 8, 9, 4, 1, 0, 1, 6, 7, 6, 5, 1, 0, 1, 2, 1, 4, 5, 6, 1, 0, 1, 4, 3, 6, 5, 6, 7, 1, 0, 1, 8, 9, 4, 5, 6, 9, 8, 1, 0, 1, 6, 7, 6, 5, 6, 3, 4, 9, 1, 0, 1, 2, 1, 4, 5, 6, 1, 2, 1, 10, 1, 0, 1, 4, 3, 6, 5, 6, 7, 6, 9, 100, 11, 1, 0, 1, 8, 9, 4, 5, 6, 9, 8, 1, 1000, 121, 12, 1
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2023

Keywords

Examples

			4 * 4 = 16, so T(4,2) = 6. 6 * 4 = 24, so T(4,3) = 4.
Square array begins:
  1, 0, 0, 0, 0, 0, 0, 0, ...
  1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 2, 4, 8, 6, 2, 4, 8, ...
  1, 3, 9, 7, 1, 3, 9, 7, ...
  1, 4, 6, 4, 6, 4, 6, 4, ...
  1, 5, 5, 5, 5, 5, 5, 5, ...
  1, 6, 6, 6, 6, 6, 6, 6, ...
  1, 7, 9, 3, 1, 7, 9, 3, ...
		

Crossrefs

Columns k=0..4 give A000012, A001477, A059729, A169885, A169886.
Rows n=0..4 give A000007, A000012, A000689, A001148, A168428.
T(11,k) gives A059734.
Main diagonal gives A361351.

Programs

  • PARI
    T(n, k) = fromdigits(Vec(Pol(digits(n))^k)%10);
Showing 1-6 of 6 results.