cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A059734 Carryless 11^n base 10; a(n) is carryless sum of 10*a(n-1) and a(n-1).

Original entry on oeis.org

1, 11, 121, 1331, 14641, 150051, 1650561, 17155171, 188606881, 1964664691, 10500200501, 115502205511, 1260524250621, 13865766756831, 141412323214141, 1555535555355551, 16000880008800061, 176008680086800671
Offset: 0

Views

Author

Henry Bottomley, Feb 20 2001

Keywords

Comments

Subsequence of A002113. - Chai Wah Wu, Jul 30 2025

Examples

			a(7)=17155171 since a(6)=1650561 and digits of a(7) are sum mod 10 of 1, 6+1=7, 5+6=1, 0+5=5, 5+0=5, 6+5=1, 1+6=7 and 1.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Mod[Binomial[n, m], 10]*10^m, {m, 0, n}], {n, 0, 30}] (* Roger L. Bagula and Gary W. Adamson, Sep 14 2008 *)
  • PARI
    a(n) = fromdigits(Vec(Pol(digits(11))^n)%10); \\ Seiichi Manyama, Mar 10 2023
    
  • Python
    from math import comb, prod
    from sympy.ntheory.modular import crt
    from gmpy2 import digits
    def A059734(n):
        k, l = 0, len(s:=digits(n,5))
        for m in range(n+1):
            t = digits(m,5).zfill(l)
            k = 10*k+crt([5,2],[prod(comb(int(s[i]),int(t[i]))%5 for i in range(l))%5,int(not ~n & m)])[0]
        return k # Chai Wah Wu, Jul 30 2025

Formula

a(n)=Sum[Mod[Binomial[n, m], 10]*10^m, {m, 0, n}]. - Roger L. Bagula and Gary W. Adamson, Sep 14 2008

A361390 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) is carryless n^k base 10.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 8, 9, 4, 1, 0, 1, 6, 7, 6, 5, 1, 0, 1, 2, 1, 4, 5, 6, 1, 0, 1, 4, 3, 6, 5, 6, 7, 1, 0, 1, 8, 9, 4, 5, 6, 9, 8, 1, 0, 1, 6, 7, 6, 5, 6, 3, 4, 9, 1, 0, 1, 2, 1, 4, 5, 6, 1, 2, 1, 10, 1, 0, 1, 4, 3, 6, 5, 6, 7, 6, 9, 100, 11, 1, 0, 1, 8, 9, 4, 5, 6, 9, 8, 1, 1000, 121, 12, 1
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2023

Keywords

Examples

			4 * 4 = 16, so T(4,2) = 6. 6 * 4 = 24, so T(4,3) = 4.
Square array begins:
  1, 0, 0, 0, 0, 0, 0, 0, ...
  1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 2, 4, 8, 6, 2, 4, 8, ...
  1, 3, 9, 7, 1, 3, 9, 7, ...
  1, 4, 6, 4, 6, 4, 6, 4, ...
  1, 5, 5, 5, 5, 5, 5, 5, ...
  1, 6, 6, 6, 6, 6, 6, 6, ...
  1, 7, 9, 3, 1, 7, 9, 3, ...
		

Crossrefs

Columns k=0..4 give A000012, A001477, A059729, A169885, A169886.
Rows n=0..4 give A000007, A000012, A000689, A001148, A168428.
T(11,k) gives A059734.
Main diagonal gives A361351.

Programs

  • PARI
    T(n, k) = fromdigits(Vec(Pol(digits(n))^k)%10);
Showing 1-2 of 2 results.