cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A169968 Positive integers not in A169884.

Original entry on oeis.org

1, 3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 45, 47, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 83, 85, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
Offset: 1

Views

Author

N. J. A. Sloane, Aug 07 2010

Keywords

Comments

Positive numbers that are not zero divisors in carryless arithmetic mod 10.

A169887 Primes in carryless arithmetic mod 10.

Original entry on oeis.org

21, 23, 25, 27, 29, 41, 43, 45, 47, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, 65, 67, 69, 81, 83, 85, 87, 89, 201, 209, 227, 229, 241, 243, 261, 263, 287, 289, 403, 407, 421, 427, 443, 449, 463, 469, 481, 487, 551, 553, 557, 559, 603, 607, 623, 629, 641, 647, 661, 667, 683, 689, 801, 809, 821, 823, 847, 849, 867, 869, 881, 883
Offset: 1

Views

Author

Keywords

Comments

Define the units in carryless arithmetic mod 10 to be the numbers 1, 3, 7 and 9 (these divide any number). A prime is a number N, not a unit, whose only factorizations are of the form N = u * M, where u is a unit.
There are two types: e-type primes (A163396) and f-type (A169984).

Examples

			Examples of nonprimes: 2 = 2*51, 4 = 2*2, 10 = 52*85, 11 = 57*83, 101 = 13*17, 102 = 58 * 254 = 502 * 801, 103 = 53 * 251 = 507 * 809, 107 = 53 * 259 = 507 * 801, 108 = 58 * 256 = 502 * 809, 111 = 227 * 553.
		

Crossrefs

Cf. A004520, A059729, A168294, A168541, A169885, A169886, A169884, A169903 (primitive primes).
Cf. A169962.

A169885 Cubes (n * n * n) in carryless arithmetic mod 10.

Original entry on oeis.org

0, 1, 8, 7, 4, 5, 6, 3, 2, 9, 1000, 1331, 1628, 1977, 1284, 1555, 1886, 1173, 1422, 1739, 8000, 8261, 8448, 8647, 8864, 8005, 8266, 8443, 8642, 8869, 7000, 7791, 7468, 7117, 7844, 7555, 7246, 7913, 7662, 7399, 4000, 4821, 4688, 4487, 4224, 4005, 4826, 4683
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    a(n) = fromdigits(Vec(Pol(digits(n))^3)%10); \\ Seiichi Manyama, Mar 09 2023

A169886 Fourth powers (n * n * n * n) in carryless arithmetic mod 10.

Original entry on oeis.org

0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 10000, 14641, 18426, 12481, 16666, 10005, 14646, 18421, 12486, 16661, 60000, 62481, 64646, 66661, 68426, 60005, 62486, 64641, 66666, 68421, 10000, 18421, 16666, 14641, 12486, 10005, 18426, 16661, 14646, 12481, 60000, 66661, 62486
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    a(n) = fromdigits(Vec(Pol(digits(n))^4)%10); \\ Seiichi Manyama, Mar 09 2023

A168541 Numbers consisting of either 2's and 0's or 5's and 0's.

Original entry on oeis.org

2, 5, 20, 50, 200, 202, 220, 500, 505, 550, 2000, 2002, 2020, 2022, 2200, 2202, 2220, 5000, 5005, 5050, 5055, 5500, 5505, 5550, 20000, 20002, 20020, 20022, 20200, 20202, 20220, 20222, 22000, 22002, 22020, 22022, 22200, 22202, 22220, 50000, 50005
Offset: 1

Views

Author

Keywords

Comments

A subset of the divisors of zero in carryless arithmetic mod 10, e.g., 5 * 44 = 0.

Crossrefs

Programs

  • Mathematica
    lst = {2, 5}; k = 1; While[k < 10^5, id = Union@ IntegerDigits@k; len = Length@ id; If[ len == 2 && id == {0, 2} || id == {0, 5}, AppendTo[lst, k]]; k++ ]; lst (* Robert G. Wilson v, Jul 12 2010 *)
    Join[{2,5},Sort[Flatten[Table[Select[FromDigits/@Tuples[{k,0},6],DigitCount[ #,10,0]>0 && DigitCount[#,10,k]>0&],{k,{2,5}}]]]] (* Harvey P. Dale, Jul 03 2020 *)

Extensions

More terms from Robert G. Wilson v, Jul 12 2010

A169903 Primitive primes in carryless arithmetic mod 10.

Original entry on oeis.org

21, 23, 25, 27, 29, 51, 56, 201, 209, 227, 229, 241, 243, 261, 263, 287, 289, 551, 2023, 2027, 2043, 2047, 2061, 2069, 2081, 2089, 2207, 2209, 2221, 2223, 2263, 2267, 2281, 2287, 2401, 2407, 2421, 2423, 2441, 2449, 2483, 2489, 2603, 2609
Offset: 1

Views

Author

Keywords

Comments

Define the units in carryless arithmetic mod 10 to be the numbers 1, 3, 7 and 9 (these divide any number). A prime is a number N, not a unit, whose only factorizations are of the form N = u * M, where u is a unit.
A prime is primitive if it is not the carryless product of a smaller prime and a unit.
A subsequence of A169887.

Crossrefs

Showing 1-6 of 6 results.