A004642 Powers of 2 written in base 3.
1, 2, 11, 22, 121, 1012, 2101, 11202, 100111, 200222, 1101221, 2210212, 12121201, 102020102, 211110211, 1122221122, 10022220021, 20122210112, 111022121001, 222122012002, 1222021101011, 10221112202022, 21220002111121, 120210012000012, 1011120101000101, 2100010202000202
Offset: 0
References
- N. J. A. Sloane, The Persistence of a Number, J. Recr. Math. 6 (1973), 97-98.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Yagub N. Aliyev, Digits of powers of 2 in ternary numeral system, Notes on Number Theory and Discrete Mathematics, Vol. 29, No. 3 (2023), 474-485.
- Paul Erdős, Some unconventional problems in number theory, Mathematics Magazine, Vol. 52, No. 2 (1979), pp. 67-70.
- Donald L. Kreher and Douglas R. Stinson, On min-base palindromic representations of powers of 2, arXiv:2401.07351 [math.NT], 2024. See Table 4 p. 10.
- Jeffrey C. Lagarias, Ternary Expansions of Powers of 2, Journal of the London Mathematical Society, Vol. 79, No. 3 (2009), pp. 562-588; arXiv preprint, arXiv:math/0512006 [math.DS], 2005-2008.
- Terry Tao, The Collatz Conjecture, Littlewood-Offord theory, and powers of 2 and 3, 2011.
- Eric Weisstein's World of Mathematics, Ternary.
Crossrefs
Programs
-
Magma
[Seqint(Intseq(2^n, 3)): n in [0..30]]; // G. C. Greubel, Sep 10 2018
-
Mathematica
Table[FromDigits[IntegerDigits[2^n, 3]], {n, 25}] (* Alonso del Arte Dec 11 2009 *)
-
PARI
a(n)=fromdigits(digits(2^n,3)) \\ M. F. Hasler, Jun 23 2018
Comments